[CSP2019]划分-64分题解

原题目:

看到这个题目,很容易想到是道dp题目
考虑从子集往全集推最优解

思路:
首先处理原序列的前缀和
f[i]表示原序列前i个数的最小平方和
对于第一个区间[i,j],如果它可以被合并,就考虑   f [ i ] \ f[i]  f[i]   f [ j ] + ( s u m [ i ] − s u m [ j ] ) 2 \ f[j]+(sum[i]-sum[j])^2  f[j]+(sum[i]sum[j])2,取一个较小值。

总结:
1.预处理

预处理前缀和sum数组,   f [ i ] \ f[i]  f[i]的初始值就是   s u m [ i ] 2 \ sum[i]^2  sum[i]2
预处理出一个last数组,last[i]表示前i个数的最小平方和的合并方式中的最后一个数(last[i]表示f[i]中的最后一个数)。

2.状态转移方程

可转移条件: last[j]<=sum[i]-sum[j] 表示i到j这个区间可以被合并。
状态转移方程为
  f [ i ] = m i n ( f [ i ] , f [ j ] + ( s u m [ i ] − s u m [ j ] ) 2 ) \ f[i]=min(f[i],f[j]+(sum[i]-sum[j])^2)  f[i]=min(f[i],f[j]+(sum[i]sum[j])2)
如果合并的答案比不合并小,那就同时更新last[i]的值为sum[i]-sum[j]。

if(last[j]<=sum[i]-sum[j])
	if(f[j]+(sum[i]-sum[j])*(sum[i]-sum[j])<=f[i])
		f[i]=f[j]+(sum[i]-sum[j])*(sum[i]-sum[j]),
		last[i]=sum[i]-sum[j];

最后贴上来完整代码:

#include<bits/stdc++.h>
#define maxn 5005
using namespace std;
long long f[maxn],sum[maxn];
int n,a[maxn],x,last[maxn];
int main()
{
//	freopen("2019partition.in","r",stdin);
//	freopen("2019partition.out","w",stdout);
	scanf("%d%d",&n,&x);
	for(int i=1;i<=n;i++) 
		scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i],
		f[i]=sum[i]*sum[i],last[i]=a[i];
	for(int i=1;i<=n;i++)
		for(int j=0;j<i;j++)
			if(last[j]<=sum[i]-sum[j])
				if(f[j]+(sum[i]-sum[j])*(sum[i]-sum[j])<=f[i])
					f[i]=f[j]+(sum[i]-sum[j])*(sum[i]-sum[j]),
					last[i]=sum[i]-sum[j];
	cout<<f[n];
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值