看到这个题目,很容易想到是道dp题目
考虑从子集往全集推最优解
思路:
首先处理原序列的前缀和
f[i]表示原序列前i个数的最小平方和
对于第一个区间[i,j],如果它可以被合并,就考虑
f
[
i
]
\ f[i]
f[i]和
f
[
j
]
+
(
s
u
m
[
i
]
−
s
u
m
[
j
]
)
2
\ f[j]+(sum[i]-sum[j])^2
f[j]+(sum[i]−sum[j])2,取一个较小值。
总结:
1.预处理
预处理前缀和sum数组,
f
[
i
]
\ f[i]
f[i]的初始值就是
s
u
m
[
i
]
2
\ sum[i]^2
sum[i]2。
预处理出一个last数组,last[i]表示前i个数的最小平方和的合并方式中的最后一个数(last[i]表示f[i]中的最后一个数)。
2.状态转移方程
可转移条件: last[j]<=sum[i]-sum[j] 表示i到j这个区间可以被合并。
状态转移方程为
f
[
i
]
=
m
i
n
(
f
[
i
]
,
f
[
j
]
+
(
s
u
m
[
i
]
−
s
u
m
[
j
]
)
2
)
\ f[i]=min(f[i],f[j]+(sum[i]-sum[j])^2)
f[i]=min(f[i],f[j]+(sum[i]−sum[j])2)
如果合并的答案比不合并小,那就同时更新last[i]的值为sum[i]-sum[j]。
if(last[j]<=sum[i]-sum[j])
if(f[j]+(sum[i]-sum[j])*(sum[i]-sum[j])<=f[i])
f[i]=f[j]+(sum[i]-sum[j])*(sum[i]-sum[j]),
last[i]=sum[i]-sum[j];
最后贴上来完整代码:
#include<bits/stdc++.h>
#define maxn 5005
using namespace std;
long long f[maxn],sum[maxn];
int n,a[maxn],x,last[maxn];
int main()
{
// freopen("2019partition.in","r",stdin);
// freopen("2019partition.out","w",stdout);
scanf("%d%d",&n,&x);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i],
f[i]=sum[i]*sum[i],last[i]=a[i];
for(int i=1;i<=n;i++)
for(int j=0;j<i;j++)
if(last[j]<=sum[i]-sum[j])
if(f[j]+(sum[i]-sum[j])*(sum[i]-sum[j])<=f[i])
f[i]=f[j]+(sum[i]-sum[j])*(sum[i]-sum[j]),
last[i]=sum[i]-sum[j];
cout<<f[n];
}