主席树

先%fotile主席

话说本蒟蒻一直布吉岛主席树与可持久化线段树的区别。。。也许他们就是一个东西。。。


首先


很明显的,如果我们要在原线段树上进行一次单点修改,并将新的树保存下来,我们其实可以不用新建2n个空间,我们可以注意到,每修改一次单点,只对从根到那个叶节点路径上的点有影响,所以我们新建一棵树只需logn的空间开销,正如图中所示,我们把新的节点的另一个儿子,指向老的节点的一个儿子即可(由于是修改,线段树的结构是完全一样的,只是这logn个节点维护的信息不一样罢了。


我结构体是这样定义:

struct Node {
	int sum;
	Node *l, *r;
	Node (int sum = 0, Node *l = Null, Node *r = Null) : sum(sum), l(l), r(r) {}
}*root[N], meme[N * 100], *pool = meme;
我们可以这样修改:

Node *Modify (Node *A, int l, int r, int x, int data) {
	if (l == r) return newnode (A -> sum + data, Null, Null);
	int mid = (l + r) >> 1;
	if (x > mid) return newnode (A -> sum + data, A -> l, Modify (A -> r, mid + 1, r, x, data));
	return newnode (A -> sum + data, Modify (A -> l, l, mid, x, data), A -> r);
}

修改后返回的值就是新树的根辣!

请把上面的修改看懂。。。


那么问题来了,说了这么多也没扯上什么是主席树啊。。。。


我先通过一道题来解释吧,求区间第k小,如果是前缀第k小,普通权值线段树是可做的吧。

我们可以对于一个长度为n的序列,建立n棵(主席)树 (当然要先建一棵空的主席(线段)树,设这为第0棵树, 然后第i棵(主席)树根据第i-1棵(主席)树按刚才的方法建出)。由于所有的(主席)树的结构都是相同的,我们可以直接对他们代表同一段权值的节点作减法(比如我们要查询一段区间[l,r],我们可以用r代表一段权值的节点减去l-1代表这一段权值的节点,所得的信息就是[l,r]这段区间的这段权值的信息,r代表这一段权值的节点储存前r个的信息,l代表这一段权值的节点储存前l-1这一段的信息)。然后根据这个就可以求区间第k大了。。。 (因为我是蒟蒻,如果有不详细的地方请指出,以便我修正)

上代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<string>
#include<iostream>
#include<algorithm>
#include<cctype>
#include<map> 
#include<cmath>

const int N = 3e4 + 7; 

struct Node *Null;

struct Node {
	int sum;
	Node *l, *r;
	Node (int sum = 0, Node *l = Null, Node *r = Null) : sum(sum), l(l), r(r) {}
}*root[N], meme[N * 100], *pool = meme;

Node *newnode (int sum, Node *l, Node *r) {
	return new (pool++) Node (sum, l, r);
}

Node *Build_Null (int l, int r) {
	if (l == r) return newnode (0, Null, Null);
	int mid = (l + r) >> 1;
	return newnode (0, Build_Null (l, mid), Build_Null (mid + 1, r));
}

Node *Modify (Node *A, int l, int r, int x, int data) {
	if (l == r) return newnode (A -> sum + data, Null, Null);
	int mid = (l + r) >> 1;
	if (x > mid) return newnode (A -> sum + data, A -> l, Modify (A -> r, mid + 1, r, x, data));
	return newnode (A -> sum + data, Modify (A -> l, l, mid, x, data), A -> r);
}

int Query (Node *x, int l, int r, int k) {
	if (k == (r - l + 1)) return 0;
	if (!k) return x -> sum;
	int mid = (l + r) >> 1;
	if (k <= mid - l + 1) return Query (x -> l, l, mid, k) + x -> r -> sum;
	return Query (x -> r, mid + 1, r, k - mid + l - 1);
}

int a, n, m, x1, x2;
using std :: map;
map <int, int> tem;
Node *tt;

int main () {
	Null = new Node (0, NULL, NULL);
	scanf ("%d", &n); root[0] = Build_Null (1, n);
	for (int i = 1; i <= n; ++i) {
		scanf ("%d", &a);
		if (!tem.count(a)) tt = root[i-1];
		else tt = Modify (root[i-1], 1, n,
		tem[a], -1);
		root[i] = Modify (tt, 1, n, i, 1);
		tem[a] = i;
	} 
	scanf ("%d", &m);
	for (int i = 1; i <= m; ++i) {
		scanf ("%d%d", &x1, &x2);
		printf ("%d\n", Query (root[x2], 1, n, x1 - 1)); 
	}
	return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值