基于MATLAB梯形法求积分

这是一个定积分的问题。

81983bc3b5ad44389e50bb56090e66e2.png

题目

我们可以打开MATLAB并搭建脚本文件(开心心)

x=0:0.01:1;
y=sqrt(x);
plot(x,y,'-k');

确保编程无误后,点击运行,好开心!图像出来啦!

注意哈,时间间隔不能太短也不能太长,间隔大的话,曲线不平滑,间隔小的话,定点很麻烦,因为鼠标的一个微小位移都会导致定点不准,举个例子,如果自变量间隔是0.001的话,我想定点为0.1的话,很有可能便宜到0.999或者1.001,这是最糟心的事儿了,我就经历过,希望大家吸取教训哈。

13df80a559b44e528ce9b2e2d8f70c96.png

运行结果

f03f1e73a0464b9598559085a5596860.png

6c6e979b65c04efbb08a03e3ef265cc7.png

不足近似值和过剩近似值的计算结果


我们用物理实验精确度计算方法“四舍六入五凑偶”去算。

四舍六入五凑偶,说到底也不难理解,举个例子:比如说你要精确到千分位,四舍就是万分位如果不高于4就舍去,2.5612记作2.561;六入就是万分位不低于6,千分位加一,4.3388记作4.339;五凑偶就是万分位是5的时候,千分位是偶数就把0.0005舍去,千分位是奇数就加到相邻的一个偶数上去,比如圆周率π=3.1415926,可记作3.142,1.5565则记为1.556。

计算得出该定积分的不足近似值为0.416417,过剩近似值为0.445437。

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高科技雷龙王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值