变步长梯形求解微分方程

该博客介绍了一种使用变步长梯形公式进行微分方程数值求解的方法,通过调整步长以提高精度。代码示例展示了如何实现这一算法,并从《数值分析简明教程》中引用了相关算法流程图。程序中包含误差控制,以确保达到预期的精度。
摘要由CSDN通过智能技术生成

/**
***变步长梯形求解微分方程***
   
 获取初值:  T1 = h/2[ f(x(k)) + f(x(k+1)) ]
 
                                         n-1
 变步长梯形公式: T2n = 1/2*Tn + h/2 * ∑ f ( x(k+1/2) )
                                         k=0
 步长: h=b-a/n

 属性: 数值积分法

《数值分析简明教程》-2 Editon -高等教育出版社- page 67 算法流程图
  
 代码维护:2005.6.14  DragonLord
**/
#include<iostream.h>
#include<math.h>
#include<stdio.h>

double f(double x)
{
    double f;
 if(x==0)f=1;        //                              1
 else f=sin(x)/x;  //   举例方程 I = ∫  sin(x)/x dx
 return f;              //                              0
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值