快速弦截法解方程

这篇博客介绍了快速弦截法,一种两步迭代求解方程的方法,它避免了牛顿法中求导的复杂性。内容包括算法公式、性质和在《数值分析简明教程》中的引用。还提供了一个C++代码示例,用于求解方程x*exp(x)-1=0,并包含迭代次数、误差限制等参数设置。
摘要由CSDN通过智能技术生成

/**
***快速弦截法***
 
  公式:x(k+1) = x(k) - ( x(k) - x(k-1) ) * f( x(k) ) / f( x(k) - f(x(k-1) )

  属性:两步迭代法

  描述:计算x(k+1)时需要利用前两步信息x(k),x(k-1).免去了Newton法中需要求解一阶导函数的繁琐

  《数值分析简明教程》-2 Editon -高等教育出版社 -page 140 -无算法流程图

  代码维护:2005.6.14  DragonLord
**/

#include<iostream.h>
#include<math.h>
#include<stdio.h>

//范例程序中方程为:x*exp(x)-1=0

double f(double x)
{
 return x-exp(-x);
}

int main()
{
 double x0,x1,x2,e,temp;
 int N,k;
 while(cin>>x0>>x1>>e>>N)
 {
  k=1;
   
  loop: if(f(x1)-f(x0)==0){cout<<"函数异常!"<<endl;break;}
  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值