https://github.com/PhillipHuang2017/SwordOffer
19.顺时针打印矩阵
题目描述
-
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字)。
-
例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10.
-
(实际代码通过返回一个按打印顺序排列的数组来实现)
解题思路
-
思路一,先计算要打印多少圈,然后每次记录下来当前剩下的矩阵的
left
,right
,top
,bottom
,在大循环里面每次打印一圈,当某一圈结束后left
大于right
或者top
大于bottom
就结束循环,顶点统一归到行里面(不统一也行,但是要清楚每个顶点归到哪一次循环了),但是要注意最后只剩一行或者一列或者一个数字的时候别重复了,因此四个循环中只有第一个循环是每次一定会执行的。具体看代码,比较好理解。推荐使用这个方法。 -
思路二,通过每次改变方向后打印的次数规律,每打印一行,下一次再按行的方向打印的时候,打印次数就会少一个,下标移动的方向也会反过来,列也是一样的。因此在while循环中包含两个循环,一个按行打印,一个按列方向打印,每次打印完都把下次按该方向打印的次数减一,将下标方向反转。
-
但是这样有个问题,就是不好判断什么时候结束,因此先计算出总共要打印多少个数字,没打印一个数字,该变量就减一,该变量减到0就结束。
-
这个方法不是很好,代码也不太好写,思路也麻烦,不建议这个方法,很垃圾。
-
代码
- 思路一(推荐)
class Solution {
public:
vector<int> printMatrix(vector<vector<int> > matrix) {
vector<int> result;
int row_len = matrix.size();
int column_len = matrix[0].size();
if(row_len==0 || column_len==0) return result;
int left=0, right=column_len-1, top=0, bottom=row_len-1;
while(left<=right&&top<=bottom){
for(int i=left;i<=right;i++)
result.push_back(matrix[top][i]);
if(top<bottom-1)
for(int i=top+1;i<=bottom-1;i++)
result.push_back(matrix[i][right]);
if(left<=right&&top<bottom)
for(int i=right;i>=left;i--)
result.push_back(matrix[bottom][i]);
if(top<bottom-1&&left<right)
for(int i=bottom-1;i>=top+1;i--)
result.push_back(matrix[i][left]);
left++;right--;top++;bottom--;
}
return result;
}
};
- 思路二(垃圾)
class Solution {
public:
vector<int> printMatrix(vector<vector<int> > matrix) {
vector<int> result;
int row_len = matrix.size();
int column_len = matrix[0].size();
if(row_len==0 || column_len==0) return result;
int column_step = 1, row_step = 1;
int column = -1, row = 0;
int num = row_len*column_len;
int steps;
while(num){
if(column_len>0){
steps = column_len;
while(steps--){
column += column_step;
result.push_back(matrix[row][column]);
num--;
}
column_step = -column_step;
column_len--;
}
if(row_len>0){
row_len--;
steps = row_len;
while(steps--){
row += row_step;
result.push_back(matrix[row][column]);
num--;
}
row_step = -row_step;
}
}
return result;
}
};