题目描述
基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 收藏 关注
一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值。
例如:3 * 3的方格。
1 3 3
2 1 3
2 2 1
能够获得的最大价值为:11。
Input
第1行:N,N为矩阵的大小。(2 <= N <= 500)
第2 - N + 1行:每行N个数,中间用空格隔开,对应格子中奖励的价值。(1 <= N[i] <= 10000)
Output
输出能够获得的最大价值。
Input示例
3
1 3 3
2 1 3
2 2 1
Output示例
11
解题思想
/*、
非常经典的一个动态规划问题,本题采用记忆话搜索
*/
代码
import java.util.Scanner;
public class Main{
//preprocess
static int[][] map = null;
static int[][] a = null;
static int n = 0;
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
//input
n = sc.nextInt();
//init
a = new int[n][n];
map = new int[n][n];
for(int i=0; i<n; ++i)
for(int j=0; j<n; ++j){
a[i][j] = sc.nextInt();
map[i][j] = -1;
}
//process
int result = solve(0,0);
//output
System.out.println(result);
}
public static int solve(int i, int j) {
if (i == n || j == n)
return 0;
if (map[i][j] > 0)
return map[i][j];
return map[i][j] = Math.max(solve(i + 1, j), solve(i, j + 1)) + a[i][j];
}
}