RXD and math(莫比乌斯函数,快速幂)

一道数学问题要求计算涉及莫比乌斯函数和快速幂的表达式。通过观察数据范围和输入数量,可以发现答案为n^k,使用快速幂算法实现O(log k)的时间复杂度。题目中给出的样例输出为999999937。
摘要由CSDN通过智能技术生成



RXD is a good mathematician.
One day he wants to calculate:

i=1nkμ2(i)×⌊nki−−−√⌋


output the answer module 109+7.
1≤n,k≤1018

μ(n)=1(n=1)

 

μ(n)=(−1)k(n=p1p2…pk)

 

μ(n)=0(otherwise)


p1,p2,p3…pk are different prime numbers

 

 

Input

There are several test cases, please keep reading until EOF.
There are exact 10000 cases.
For each test case, there are 2 numbers n,k.

 

 

Output

For each test case, output "Case #x: y", which means the test case number and the answer.

 

 

Sample Input

 

10 10

 

 

Sample Output

 

Case #1: 999999937

 

这道题的特点是数据范围大,输入数量少,应该首先想到打表找规律。简单打表即可发现,答案就是n^k

注意到一个数字xx必然会被唯一表示成a^2\times ba​2​​×b的形式.其中|\mu(b)| = 1∣μ(b)∣=1。 所以这个式子会把[1, n^k][1,nk​​]的每个整数恰好算一次. 所以答案就是n^knk​​,快速幂即可. 时间复杂度O(\log k)O(logk).

把后面 ⌊nki−−−√⌋这个数看做b,在【1,n^k】中 最多有⌊nki−−−√⌋个数使得前面那个u(i)不等于0,所以一乘法就是n^k/i,接下来【1,n^k】相加就是n^k 
n

 

 

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
long long quickmod(long long a,long long b,long long m)
{
    a=a%mod,b%=mod-1;   //利用费马小定理a^b%c=a^(b%(c-1))%c
    long long ans = 1;
    while(b)//用一个循环从右到左便利b的所有二进制位
    {
        if(b&1)//判断此时b[i]的二进制位是否为1
        {
            ans = (ans*a)%m;//乘到结果上,这里a是a^(2^i)%m
            b--;//把该为变0
        }
        b/=2;
        a = a*a%m;
    }
    return ans;
}
int main()
{
    ll x,y,ca=1;
    while(~scanf("%I64d%I64d",&x,&y))
    {
        printf("Case #%I64d: %I64d\n",ca++,quickmod(x,y,mod));
    }
}

快速幂模板

long long quickmod(long long a,long long b,long long m)
{
    //x=x%mod,y%=mod-1;   //利用费马小定理a^b%c=a^(b%(c-1))%c
    long long ans = 1;
    while(b)//用一个循环从右到左便利b的所有二进制位
    {
        if(b&1)//判断此时b[i]的二进制位是否为1
        {
            ans = (ans*a)%m;//乘到结果上,这里a是a^(2^i)%m
        }
        b>>=1;
        a = a*a%m;
    }
    return ans;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值