DP,方程关系是,高为K,node数为N的树,相当于,(1)左子树高为K-1,右子树高<=K-2;(2)左子树高<=K-2,右子树高为K-1;(3)做右子树高度都为K-1;三种情况的和。
(1)和(2)是对称的,所以求一个*2即可。
求(1)时,需要枚举左子树的node数量。
下面是DP方程:
设a[i][j]是高为j,node数为i的子树的数量。b[i][j]是高<=j,node数为i的树的数量。
i - 1
a[i][j] = Σ ( (a[m][j - 1] * b[i - m - 1][j - 2]) * 2 + a[m][j - 1] * a[i - m - 1][j - 1]);
m = 2*(j - 1) - 1
/*
ID :
LANG: C++11
TASK: nocows
*/
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <cmath>
#include <set>
using namespace std;
int main()
{
freopen("nocows.in", "r", stdin);
freopen("nocows.out", "w", stdout);
std::ios::sync_with_stdio(false);
int N, K;
cin >> N >> K;
int a[205][105] = {};
int b[205][105] = {};
a[1][1] = 1;
b[1][1] = 1;
for (int i = 0; i < 205; i ++)
a[i][0] = 1;
for (int j = 2; j <= K; j ++) {
for (int i = 2 * j - 1; i <= N; i += 2) {
for (int m = 2 * j - 3; m <= i - 1; m += 2) {
a[i][j] += a[m][j - 1] * b[i - 1 - m][j - 2] * 2;
a[i][j] += a[m][j - 1] * a[i - 1 - m][j - 1];
a[i][j] %= 9901;
/* 注释里是如果没有数组b时候的做法,但复杂度会高很多。
for (int t = 1; t <= j - 2; t ++){
a[i][j] += a[m][j - 1] * a[i - 1 - m][t] * 2;
a[i][j] %= 9901;
}
a[i][j] += a[m][j - 1] * a[i - 1 - m][j - 1];
a[i][j] %= 9901;
*/
}
}
for (int i = 1; i <= N; i += 2){
b[i][j] += b[i][j - 1] + a[i][j];
b[i][j] %= 9901;
}
}
cout << a[N][K] << endl;
return 0;
}