数学小报 -对数 log
0. 前言
非常感谢大家提出的意见。那么接下来是对于一些问题的回答以及问题的纠正。
- 第一个方程列错了,正确的是 a 2 − x 2 = b 2 − ( c − x ) 2 a^2-x^2=b^2-(c-x)^2 a2−x2=b2−(c−x)2,解为 x = a 2 − b 2 + c 2 2 c x=\frac{a^2-b^2+c^2}{2c} x=2ca2−b2+c2。
- 计算 h 2 h^2 h2 的第五个等式,分母 4 c 4c 4c 改为 4 c 2 4c^2 4c2。
- 计算 S S S 的最终结果漏了根号,应为 S = p ( p − a ) ( p − b ) ( p − c ) S=\sqrt{p(p-a)(p-b)(p-c)} S=p(p−a)(p−b)(p−c)。
- 之前有一位同学提出几何题可以通过建立平面直角坐标系来解(我好像发现了数学的BUG),其实这种方法叫做建系,不过需要强大的计算力而且化为函数也难(例:角平分线怎么做呢),不推荐在日常学习中使用。
- 有同学提出意见说我写的太简单了,我认为数学小报是给同学们展示数学的一些小知识和魅力,不追求难而应追求其内在。
接下来的数学小报我会严格检查。每个小报最新版本请见 https://blog.csdn.net/Dream_Oler_ZJW。
1. 思考
加法的逆运算是减法,乘法的逆运算是除法。幂运算的逆运算除了开方,还有一个运算:对数运算。我们观察一个幂: a b = c a^b=c ab=c,幂运算是已知 a , b a,b a,b 求 c c c,开方是已知 b , c b,c b,c 求 a a a,对数则是已知 a , c a,c a,c 求 b b b。
我们如何学习一种运算?可以从以下几个方面入手:
- 前置知识(乘法的前置是加法) 2. 定义和概念 3. 公式和规律 4.用途
2. 定义(注意!在这里我们不讨论
a
≤
0
a \le 0
a≤0 (思考:为什么?)或
a
=
1
a=1
a=1 的情况,无意义)
若
a
b
=
c
,则
log
a
c
=
b
,
a
为底数,
c
为幂,
b
为指数
若 a^b=c,则 \log_a c=b, a 为底数,c为幂,b为指数
若ab=c,则logac=b,a为底数,c为幂,b为指数
3. 总结
{ a log a b = b 定义式 n m log a b = log a m b n 定义式升级版本 log a b + log a c = log a b c 加法 log a b − log a c = log a b c 减法 log a b = log c b log c a 换底公式 \left\{ \begin{matrix} a^{\log_a b}=b ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~定义式\\ \frac{n}{m}\log_a b=\log_{a^m}b^n~~~~~~~~~~~~~定义式升级版本\\ \log_a b+\log_a c=\log_a bc~~~~~~~~~~~~~~~~~~~~~~加法\\ \log_a b-\log_a c=\log_a\frac{b}{c}~~~~~~~~~~~~~~~~~~~~~~~减法\\ \log_a b=\frac{\log_c b}{\log_c a}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~换底公式\\ \end{matrix} \right. ⎩ ⎨ ⎧alogab=b 定义式mnlogab=logambn 定义式升级版本logab+logac=logabc 加法logab−logac=logacb 减法logab=logcalogcb 换底公式
4. 基本运算
设 log a b = x , log a c = y , log c a = z \log_a b=x,~\log_a c=y,~\log_c a=z logab=x, logac=y, logca=z 即 a x = b , a y = c , c z = a a^x=b,a^y=c,c^z=a ax=b,ay=c,cz=a
证明的思路:转化为之前学过的幂的运算来证明即可。
4.0 定义式 a log a b = b a^{\log_a b}=b alogab=b 由定义易得
4.1 定义式 Max Pro 版本
n m log a b = log a m b n \frac{n}{m}\log_a b=\log_{a^m}b^n mnlogab=logambn
证明:
∵ ( a m ) n m log a b = a n log a b = ( a log a b ) n = b n \displaystyle \because (a^m)^{\frac{n}{m}\log_a b}=a^{n\log_a b}=(a^{\log{_ab}})^n=b^n ∵(am)mnlogab=anlogab=(alogab)n=bn(定义式)
∴ n m log a b = log a m b n \therefore \frac{n}{m}\log_a b=\log_{a^m}b^n ∴mnlogab=logambn
4.2 加法
log a b + log a c = log a b c \log_a b+\log_a c=\log_a bc logab+logac=logabc
证明:
∵ a x × a y = a x + y \because a^x \times a^y=a^{x+y} ∵ax×ay=ax+y 即 ( b × c = b c ) (b \times c=bc) (b×c=bc)
∴ log a b c = x + y = log a b + log a c \therefore \log_a bc=x+y=\log_a b+\log_a c ∴logabc=x+y=logab+logac
4.3 减法
log a b − log a c = log a b c \log_a b-\log_a c=\log_a\frac{b}{c} logab−logac=logacb
4.4 换底公式
log a b = log c b log c a \displaystyle \log_a b=\frac{\log_c b}{\log_c a} logab=logcalogcb,也就是要证明 log a b × log c a = log c b \log_a b \times \log_c a=\log_c b logab×logca=logcb
∵ c z = a , a x = b \because c^z=a,a^x=b ∵cz=a,ax=b
∴ ( c z ) x = b \therefore (c^z)^x=b ∴(cz)x=b 即 c x z = b c^{xz}=b cxz=b