差分隐私入门

差分隐私是一种重要的隐私保护技术,旨在保护个体数据免受过度暴露。该技术通过在数据中引入噪声来确保数据分析的正确性同时隐藏个人信息。差分隐私应用于数据库、机器学习和数据采集等领域,面临如何平衡隐私保护、数据准确性及计算效率的挑战。在机器学习中,如TensorFlow Privacy,噪声被添加到模型训练中以实现差分隐私。数据采集时,使用随机化响应策略来收集用户数据。未来的研究方向包括与其他安全技术如联邦学习和多方安全计算的结合。
摘要由CSDN通过智能技术生成

差分隐私

意义与定义

目标

尽可能延迟或避免过分精确的数据,暴露个人隐私。尽可能长时间的推迟这种必然性。

定义

  • 差分隐私可以在确保的得出正确结论的前提上,加入“噪声”,从而隐藏个人信息。

  • 参数ε是来调整隐私程度的。ε越小,隐私性越好。

应用

差分隐私数据库

特点
  • 只回答聚合查询的结果
  • 通过查询结果中加入噪声来满足差分隐私
  • 例子:微软PINQ、Uber的Chorus
技术难点
  • 如何用尽量少的噪声来达到 ϵ − \epsilon- ϵ差分隐私
    • 尤其是在查询需要连接多张数据库表的时候。
  • 如何高效的计算查询的敏感度
  • 如何将差分隐私模块整合到现有的数据库当中
前景展望
  • 现有算法未能在隐私保护、查询准确性及计算率三者取得很好的平衡。
    • 如:Uber的chorus在不少查询中误差可达100%以上

差分隐私机器学习

  • 在机器学习算法中引入噪声,使得算法生成的模型能满足差分隐私。
  • 例子:google的TensorFlow Privacy
  • 用于神经网络训练
TensorFlow Privacy基本原理
  • 神经网络通常是用随机梯度下降来训练的:
    • 从一组随机的神经网络权重参数出发
    • 拿到一组随机选取的元组来计算权重的梯度
    • 用梯度来更新参数
    • 重复2-3
  • TensorFlow Privacy 对步骤2中的梯度加入噪声,保证训练过程满足差分隐私。
展望
  • 不足
    • 准确性有待提高
    • 不能很好地处理复杂模型,如GAN
  • 新方向
    • 联邦学习
    • 安全多方计算的结合

差分隐私的数据采集

  • 从移动设备采集用户数据。
  • 为满足差分隐私,让用户用类似于随机化回答的方法来提供数据
  • 如:Chrome、iPhone、iPad、windows 10
技术难点
  • 需要采集的数据比较复杂,无法用传统随机化解决。

  • 如:用户输入的新单词。

展望
  • 多方安全计算结合

差分隐私的数据合成

  • 1645931656810
  • 基本原理:
    • 先对元数据进行建模,得到一个统计模型
    • 用统计模型来合成出虚拟数据
  • 如:美国普查局的一些数据产品。
  • 技术难点:
    • 找的合适的统计模型
    • 在统计模型中加入噪声,满足差分隐私。
展望
  • 目前只能处理关系型数据
  • 对于非关系型数据的合成基本还在摸索阶段
    • 如图、文本数据等。

涉及知识点

隐私保护系统

隐私保护基础知识
  • 一个隐私保护包括各种参与者角色、匿名化操作、数据状态
  • 目标:可用性、隐私性

640?wx_fmt=jpeg

  • X是原始数据,Y是匿名处理数据,X’是Y得解密数据。攻击者得任务就是得到X’
  • 隐私性通常用泄漏量L来表示。 λ \lambda λ表示勒贝格测度(Lebesgue measure)
  • L = λ ( X , Y ) L=\lambda(X,Y) L=λ(X,Y)
  • 数据失真度 D = λ ( X , Y ) D=\lambda(X,Y) D=λ(X,Y)
  • 有很多种方法可以计算D和L 如平均均方差 D = 1 n ∑ k = 1 n E [ ( x k − y k ) 2 ] D=\frac{1}{n}\displaystyle\sum_{k=1}^{n}E[(x_k-y_k)^2] D=n1k=1nE[(xkyk)2]
  • 其中E[·]表示X,Y联合分布的期望值。
  • 如果用信息论中的互信息(mutual information)I[•]度量信息泄漏量L
  • img
隐私保护的数学模型
K-匿名模型
  • 设T={t1,t2,t3…}是数据集D的一个数据表,A是表中的属性集。A={A1,A2,A3,A4…},C是A的一个子集。则用T[C]={t[c1],t[c2]…}表示T在属性集C上的投影. QI表示一个数据表中所有准标识符集合。 对一个数据表T进行k-匿名化定义,对T中的每个记录t∈T至少存在k-1个其他记录ti1,ti2,⋯,tik−1∈Tti1,ti2,⋯,tik−1∈Tk-1 ,并且对所有的C∈QI,满足t[C]=ti1[C]=ti2[C],⋯tik−1[C]t[C]=ti1[C]=ti2[C],⋯tik−1[C]。例如,在表1中,准标识符的集合为QI={job,age},表2是进行k-匿名化之后的数据(k=2),以确保在数据表中的每个准标识符至少有k个记录与之对应,从而降低重新识别某个特定记录的概率。
差分隐私模型
ε − \varepsilon- ε差分隐私
  • 所有的D1、D2为相邻数据集(即它们至多只有一条记录不同),一个给定的随机化函数G,对所有的S∈Ranger(G)(其表示随机化算法G的输出范围),满足

  • P r ∣ G ( D 1 ) ∈ S ∥ P r ∣ G ( D 2 ) ∈ S ≤ e ϵ \frac{Pr|G(D1)\in S\|}{Pr|G(D2)\in S}\le e^{\epsilon}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值