BZOJ1412 ZJOI2009 狼和羊的故事 【网络流-最小割】

114 篇文章 0 订阅
10 篇文章 0 订阅

BZOJ1412 ZJOI2009 狼和羊的故事


Description

“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。 通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。 Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。

Input

文件的第一行包含两个整数n和m。接下来n行每行m个整数,1表示该格子属于狼的领地,2表示属于羊的领地,0表示该格子不是任何一只动物的领地。

Output

文件中仅包含一个整数ans,代表篱笆的最短长度。

Sample Input

2 2
2 2
1 1

Sample Output

2
数据范围
10%的数据 n,m≤3
30%的数据 n,m≤20
100%的数据 n,m≤100


Dinic
考虑网络流建图
源点向 g i , j = 2 g_{i,j}=2 gi,j=2连边
g i , j = 1 g_{i,j}=1 gi,j=1向汇点连边
g i , j = 2 g_{i,j}=2 gi,j=2 g i , j = 1 / 0 g_{i,j}=1/0 gi,j=1/0连边
g i , j = 1 g_{i,j}=1 gi,j=1 g i , j = 1 / 0 g_{i,j}=1/0 gi,j=1/0连边
然后我们只需要求出这张图的最小割就可以了


#include<bits/stdc++.h>
using namespace std;
#define fu(a,b,c) for(int a=b;a<=c;++a)
#define fv(a,b) for(int i=0;i<(signed)b.size();++i)
#define N 10010
#define INF 0x3f3f3f3f
struct Edge{int u,v,cap,flow;};
struct Dinic{
  vector<Edge> E;
  vector<int> G[N];
  int S,T;
  int d[N],vis[N];
  void add(int u,int v,int cap){
    E.push_back((Edge){u,v,cap,0});
    E.push_back((Edge){v,u,0,0});
    int m=E.size();
    G[u].push_back(m-2);
    G[v].push_back(m-1);
  }
  bool bfs(){
    memset(vis,0,sizeof(vis));
    memset(d,0,sizeof(d));
    queue<int> q;q.push(S);vis[S]=1;
    while(!q.empty()){
      int u=q.front();q.pop();
      fv(i,G[u]){
        Edge e=E[G[u][i]];
        if(!vis[e.v]&&e.cap>e.flow){
          vis[e.v]=1;
          d[e.v]=d[u]+1;
          q.push(e.v);
        }
      }
    }
    return vis[T];
  }
  int dfs(int u,int a){
    if(u==T||!a)return a;
    int flow=0;
    fv(i,G[u]){
      Edge &e=E[G[u][i]];
      if(d[e.v]!=d[u]+1)continue;
      int f=dfs(e.v,min(a,e.cap-e.flow));
      flow+=f;
      a-=f;
      e.flow+=f;
      E[G[u][i]^1].flow-=f;
      if(!a)break;
    }
    if(!flow)d[u]=0;
    return flow;
  }
  int Max_flow(){
    int flow=0;
    while(bfs())flow+=dfs(S,INF);
    return flow;
  }
}dinic;
#define M 110
int g[M][M],n,m;
int mx[4]={0,0,-1,1};
int my[4]={1,-1,0,0};
bool check(int x,int y){return !(x<1||x>n||y<1||y>m);}
int getind(int x,int y){return (x-1)*m+y;}
int main(){
  scanf("%d%d",&n,&m);
  dinic.S=0,dinic.T=N-1;
  fu(i,1,n)fu(j,1,m)scanf("%d",&g[i][j]);
  fu(x,1,n)fu(y,1,m){
    int id=getind(x,y);
    if(g[x][y]==1)dinic.add(id,dinic.T,INF);
    if(g[x][y]==2)dinic.add(dinic.S,id,INF);
    if(g[x][y]==1)continue;
    fu(k,0,3){
      int nx=x+mx[k];
      int ny=y+my[k];
      if(!check(nx,ny)||g[nx][ny]==2)continue;
      int nid=getind(nx,ny);
      dinic.add(id,nid,1);
    }
  }
  printf("%d",dinic.Max_flow());
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值