Description
“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向......”
Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干!
Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。
通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。
Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。文件的第一行包含两个整数n和m。接下来n行每行m个整数,1表示该格子属于狼的领地,2表示属于羊的领地,0表示该格子不是任何一只动物的领地。
10%的数据 n,m≤3
30%的数据 n,m≤20
100%的数据 n,m≤100Time limits 10s
Solution
很明显这是最小割的模型。
源点向羊,狼向汇点连无限大的边,然后中间的领地交界随便连为1的就行。
注意空地和空地要双向连
Code
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fod(i,a,b) for(i=a;i>=b;i--)
#define N 50005
#define M 105
#define INF 2147483647
using namespace std;
int fs[N],lt[N],dt[2*N],nt[2*N],f[2*N],zs[2*N],map[M][M],wf[N],sp[N],h[N],vh[N],n,m,n1,m1,fx[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
int nd(int x,int y)
{
return (x-1)*m+y+1;
}
void link(int x,int y)
{
dt[++m1]=y;
if (fs[x]==0) fs[x]=m1;
lt[x]=nt[lt[x]]=m1;
}
int GAP(int k,int s)
{
if (k==n1) return s;
int i,j,l,mh=n1+1;
for(i=fs[k];i>0;i=nt[i])
{
int p=dt[i];
if (f[i]>0)
{
if (h[k]==h[p]+1)
{
l=GAP(p,min(s,f[i]));
if (l>0)
{
f[i]-=l;
f[zs[i]]+=l;
return l;
}
if (h[1]>n1) return 0;
}
mh=min(mh,h[p]+1);
}
}
vh[h[k]]--;
if (vh[h[k]]==0) h[1]=n1+1;
vh[h[k]=mh]++;
return 0;
}
int main()
{
cin>>n>>m;
int i,j,k,ans=0;
fo(i,1,n)
{
fo(j,1,m)
{
scanf("%d",&map[i][j]);
int v=nd(i,j);
if (map[i][j]==1) wf[++wf[0]]=v;
if (map[i][j]==2) sp[++sp[0]]=v;
}
}
fo(i,1,n)
{
fo(j,1,m)
{
fo(k,0,3)
{
int x=i+fx[k][0],y=j+fx[k][1];
if (x>0&&y>0&&x<=n&&y<=m&&(map[i][j]!=map[x][y]||map[i][j]==0))
{
int p=nd(i,j),q=nd(x,y);
if (p<q)
{
link(p,q);
if (map[i][j]==2||(map[i][j]==0&&map[x][y]==1)||(map[i][j]==map[x][y]&&map[i][j]==0)) f[m1]=1;
link(q,p);
if (map[x][y]==2||(map[x][y]==0&&map[i][j]==1)||(map[i][j]==map[x][y]&&map[i][j]==0)) f[m1]=1;
zs[m1]=m1-1;
zs[m1-1]=m1;
}
}
}
}
}
n1=n*m+2;
fo(i,1,sp[0])
{
link(1,sp[i]);
f[m1]=n1;
link(sp[i],1);
zs[m1]=m1-1;
zs[m1-1]=m1;
}
fo(i,1,wf[0])
{
link(n1,wf[i]);
link(wf[i],n1);
f[m1]=n1;
zs[m1]=m1-1;
zs[m1-1]=m1;
}
memset(h,0,sizeof(h));
vh[0]=n1;
while(h[1]<=n1)
ans+=GAP(1,INF);
cout<<ans;
}