O(N)的素数筛选法和欧拉函数

首先,在谈到素数筛选法时,先涉及几个小知识点.


1.一个数是否为质数的判定.

        质数,只有1和其本身才是其约数,所以我们判定一个数是否为质数,只需要判定2~(N - 1)中是否存在其约数即可,此种方法的时间复杂度为O(N),随着N的增加,效率依然很慢。这里有个O()的方法:对于一个合数,其必用一个约数(除1外)小于等于其平方根(可用反证法证明),所以我们只需要判断2~之间的数即可.

bool is_prime(int num)
{
    const int border = sqrt(num);
    for (int i = 2; i <= border; ++i)
        if (num % i == 0)
            return false;
    return 1 != num;
}

2.一个数的质因数分解

        对于一个数N的质因数分解,简单一点的方法通过枚举2~N之间的每个数字,如果N值能整除当前枚举的数,则将N值除尽,重复上面的步骤,直到结束.我们可以看出此种方法的时间复杂度为O(N),而我们通过上面介绍的方法,可以将时间复杂度降为O(),原理与判定一个数是否为质数是一样的.

map<int, int> factor(int num)
{
    map<int, int> ans;
    const int border = sqrt(num);
    for (int i = 2; i <= border; ++i)
        while (num % i == 0)
            ++ans[i], num /= i;
    if (num > 1)
        ans[num] = 1;
    return ans;
}

3.欧拉函数

         在数论中,对正整数n,欧拉函数是小于或者等于n的数中与n互质的数的个数.假设n的唯一分解式为

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sky丶Memory

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值