要求
现在你总共有 n 门课需要选,记为 0 到 n-1。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,判断是否可能完成所有课程的学习?
示例
示例 1:
输入: 2, [[1,0]]
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。
示例 2:
输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
代码
-
拓扑排序
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<int> inDegree(numCourses,0);
vector<vector<int>> lst(numCourses,vector<int>()); //建立表
for(auto v:prerequisites)
{
inDegree[v[0]]++; //初始化入度列表
lst[v[1]].push_back(v[0]); //初始化邻接表,表头储存元素,表身储存该元素的入度元素
}
queue<int> que;
for(int i = 0;i<numCourses;i++)
{
if(inDegree[i]==0) que.push(i); //将入度为0放入队列
}
vector<int> res;
while(!que.empty())
{
auto q = que.front();
que.pop();
res.push_back(q);
for(auto s : lst[q])
{
if(--inDegree[s]==0) que.push(s);
}
}
return res.size()==numCourses;
}
总结
- 本题转化为判断一个图是否存在环,可以用拓扑排序法来做,拓扑排序的思想就是将入度为0的点删除,或去掉边,然后重新更新每个点的入度,当不存在环时,图中将没有边或点,反之则有环。