自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(80)
  • 收藏
  • 关注

原创 Python - 读取pdf、word、excel、ppt、csv、txt文件提取所有文本

以上就是全部常见的文件格式的读取和提取所有文本的全部内容了。更多其他的使用方法请查阅官方文档。

2023-08-12 11:06:46 4715 2

原创 Python - 配置工作目录环境变量.env和getenv加载环境变量

在同级目录下创建一个.env的文件,.env文件通常用于存储敏感信息或配置参数,例如数据库连接字符串、API密钥等。

2023-07-24 16:52:01 3078

原创 Python - Gradio用Blocks构建自定义界面布局的应用程序

总之,使用Blocks()来构建程序比使用Inferfaces()肯定灵活得多。本篇只谈到用Blocks可以自定义界面布局,下一篇我们将继续聊聊自定义组件触发事件。

2023-07-14 09:33:17 5320 2

原创 PPOCR -训练模型转推理模型遇到的问题

使用PPOCR命令行训练验证码单字位置检测+识别模型的情况下,这两个checkpoint训练模型测试图片均没出现问题,但转为inference推理模型的时候,问题来了。

2023-04-25 10:08:17 1499 3

原创 PPOCR - 命令行训练模型基本流程和常用命令+visualdl可视化

本文记录实践中用paddleocr训练自己的模型的基本步骤和常用命令,以detection为例更详细内容请参考官方文档。

2023-04-19 15:21:27 1827

原创 Python - 离线第三方库移动

有时候pip一个库尽管使用了国内源,仍然会出现timeout的问题。所以如果已经在其他机器下载过包,则直接将包文件移动到当前机器即可。

2023-03-14 17:20:24 1578

原创 Python -pip安装/升级指定版本

文件夹要加“.”,表示是隐藏文件夹)(4)中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/(3)清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/(1)阿里云 http://mirrors.aliyun.com/pypi/simple/(5)华中科技大学http://pypi.hustunique.com/(2)豆瓣http://pypi.douban.com/simple/

2023-03-14 10:42:31 7387

原创 python - Conda环境本地克隆命令

【代码】python - Conda环境本地克隆命令。

2023-03-13 15:13:56 874

原创 Python - 随机生成英文字母

【代码】Python - 随机生成英文字母。

2023-01-10 16:18:10 5512

原创 Python - string.Template字符串格式化

参考文章:https://www.cnblogs.com/testlearn/p/14813688.html

2022-12-08 09:39:32 731

原创 Windows - 两台电脑共享磁盘 / 映射网络驱动器

然后参考win10 两台电脑之间共享桌面及共享文件(手把手教学)

2022-12-07 14:33:14 2104

原创 Windows - mstsc远程桌面连接访问本地文件夹

cmd命令行输入:或搜索:远程桌面连接

2022-12-06 09:45:39 2107

原创 Jupyter notebook - 如何查询/获取连接Token

notebook挂服务器后台,太久没访问需要重新输入token;

2022-12-05 13:53:39 2199 1

原创 Python - 实现渐变色的RGB计算

设Step=3,将RGB(200,50,0)颜色渐变为RGB(50,200,0),即:RGB(200,50,0)经过3次颜色渐变转为RGB(50,200,0):Gradient表示第N步的R/G/B的值,A、B、Step表示从颜色A分Step步渐变为颜色B。求得两个颜色之间颜色渐变的RGB。进行修改,细分更多步骤的变化展示。

2022-09-15 15:52:24 4782

原创 Python - 浅谈Python3中map返回的迭代器对象

什么是迭代器迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。两个基本方法iter()和next()ls = [1, 2, 3]it = iter(ls) # 创建迭代器对象print(next(it)) # 输出迭代器的下一个元素 1print(next(it)) # 2print(next(it)) # 3print(next(it)) # 直至结束,报错提示:StopIteration

2022-05-27 15:24:58 1734

原创 Python - 怎么将一个数字拆分成多个随机数字

前情提要使用numpy.random.choice()的时候,通过参数p(一个列表)来指定所给选择元素的选择概率。但参数p(选择概率)要保证和为1,这时我又想随机生成选择概率,所以现在的问题就是怎么将1拆分成多个和为1的浮点数。这个问题但凡读过小学都应该知道怎么解决,但问题是我是个大学生(手动狗头)。如何解决例如,现在要将1拆分成8个随机浮点数先随机生成8个整数,例如:2,3,5,6,7,8,2,5求这8个整数之和sum,即:38再用1来乘各个比例,这里没有必要,但是其他数字的拆分就有必要。

2022-05-11 11:22:25 5916

原创 PM4PY - 事件过滤的简化接口的使用

log = pm4py.filter_end_activities(log, admitted_end_activities)描述:在提供的列表中过滤具有结束活动的案例。参数:log :log对象admitted_end_activities:指定的结束活动列表返回:过滤后的log对象log = pm4py.filter_start_activities(log, admitted_start_activities)描述:在提供的列表中过滤具有开始活动的案例。参数:log :log..

2022-04-24 11:44:10 621

原创 PM4PY - 分析建议怎样的BPMN可以转换成Process Tree

背景读取手动绘制的BPMN图,欲将其转换成Process Tree

2022-04-20 18:02:51 827

原创 BPMN - 如何绘制符合良构编排的基础BPMN?

一、什么是BPMNBPMN(Business Process Modeling Notation),是指业务流程建模与标注,包括这些图元如何组合成一个业务流程图。二、BPMN基础本文介绍的BPMN只包含对 流对象 的介绍。流对象:是定义业务流程的主要图形元素,包括三种:事件、活动、网关。事件(Events):包含 事件开始(start event)、中间事件(activity)、事件结束(end event)。事件开始用细线圆圈表示,中间事件的活动用圆角矩形表示,事件结束用粗线圆圈表示。活动(A

2022-04-18 16:35:38 1221

原创 Linux - CentOS7使用iptables开放端口

安装iptables-servicesCentOS7 默认使用firewalld防火墙,如果想换回iptables防火墙,可关闭firewalld并安装iptables。yum install iptables-services修改防火墙配置文件vi /etc/sysconfig/iptables添加端口80、8080、3306、3690端口,添加在端口22上面或者下面,不要放在最后,不然不起作用。*小提示:输入 i 进入插入状态,输入,esc退出插入状态,:wq保存。学习Linux可以看

2022-04-08 15:06:31 5577

原创 Linux - Screen的基本使用

1.安装Screen先检查是否已经安装screen --version如果未安装,CentOS输入以下命令安装yum install screenUbuntu和Debian输入以下命令安装apt install screen

2022-04-08 14:36:17 2169

原创 Linux - Python程序nohup后台运行

nohupnohup指不断地运行,是no hang up的缩写,指不间断,不挂断。运行一个进程的时候,不想让其在你退出账号时关闭,即可用nohup。nohup在不规定的情况下,所以输出内容会到nohup.out中。运行Python程序nohup python my.py >> my.log 2>&1 &# 或者nohup python my.py >> nohup.out 2>&1 &# 或者nohup python m

2022-04-02 17:10:12 8761

原创 Linux - CentOS7安装python3遇到的问题与解决方法总结

1.安装python3参考linux-Centos7安装python3并与python2共存一步步跟着做,到该网站下选择想下载的python版本找到对应版本的tar.xz用wget下载编译安装之前,咱多一步动作进入解压的Python目录,进入Modules目录,找到Setup和Setup.distvim Setup找到这几行,将注释去掉。再执行编译安装,注意要退到Python目录下再执行./configure prefix=/usr/local/python3 --with-ssl

2022-04-01 16:59:49 4002

原创 Python - Gradio 文档使用心得与文档解读

前言我也是第一天看,第一天用,读文档使用过程遇到的情况浅浅记录一下,直接进入正题。创建Interface实例这是Interface的参数gradio.Interface(self, fn, inputs=None, outputs=None, examples=None, examples_per_page=10, live=False, layout="unaligned", interpretation=None, num_shap=2.0, theme=None, title=None, d

2022-03-31 10:36:44 20170 19

原创 Python - Gradio 快速开始

本文摘要:Python第三方库Gradio快速上手与文档解读Gradio官方首页快速开始提前准备:Python3.7足矣pip安装pip install gradio为了更快安装,可以使用清华镜像源。pip install -i https://pypi.tuna.tsinghua.edu.cn/simple gradio执行以下代码import gradio as grdef greet(name): return "Hello " + name + "!!"

2022-03-30 19:18:14 21108 14

原创 Python - Pandas 数据分组groupby

本文摘要:分组后使用聚合函数统计df为单个列groupby,查询所有数据列的统计df.groupby('A').sum()返回结果,可见A变成索引列,里面的值进行了分类有bar、foo。因为调用sum函数,B列不是数字,自动忽略。...

2022-03-29 21:41:59 5833

原创 Python - Pandas 数据拼接concat

本文摘要:使用concat拼接数据df1为df2为默认concat,参数axis=0, join=‘outer’, ignore_index=False,即按行拼接,拼接方式保留所有列,不忽略原数据索引。import pandas as pdpd.concat([df1, df2])返回结果设置ignore_index=True,忽略原数据索引import pandas as pdpd.concat([df1, df2], ignore_index=True)返回结

2022-03-29 10:37:01 3270

原创 Python - Pandas Dataframe的合并Merge

本文摘要:Pandas的merge相当于SQL的join,将不同的表按共有的列属性关联起来。merge实例现有数据 df_ratings 如下df_users 如下df_movies 如下how=‘innder’ 内连接,表示两表都有同一UserID才会保留,否则丢弃。import pandas as pddf_ratings_users = pd.merge( df_ratings, df_users, left_on='UserID', right_on='UserID', h

2022-03-28 23:07:17 1134

原创 Python - Pandas 索引index的使用

本文摘要:修改索引列名修改索引列名为iddf.index.name = 'id'修改索引起始值自动生成的索引从100开始df.index = df.index + 100将数据某一列设为索引将userid列设为索引列,inplace=True表示在原df上修改,drop=False表示保留userid列,默认删除userid列。# 将userid列设为索引列df.set_index('userid', inplace=True, drop=False)# 若修改后可以这么查询u

2022-03-28 11:33:00 7978

原创 Python - Pandas 经常用到的axis参数怎么理解?千层蛋糕

本文摘要:单行单列操作,axis=0或者‘index’指的就是行,axis=1或者‘columns’指的就是列。多行多列操作,axis=0或者‘index’指的是跨行操作,可以想象成一块千层蛋糕,双手从上下将其压缩成一层蛋糕,剩下的只有多列了,多列就是你返回对象的索引,每个索引对应的值就是对每一行操作的结果。axis=1或者‘columns’指的是跨列操作,还是一块千层蛋糕,双手从两侧将其压缩成一条千层蛋糕,剩下的就是一千层,也就是行,这些行就是你希望返回对象的索引,每个索引对应的值就是对每一列操作的

2022-03-27 22:05:47 1958 1

原创 Python - Pandas 数据排序与字符串处理

本文摘要:见下图,排序的方法很显而易见,不作演示。字符串处理参考文档Series的str属性# 获取Series的str属性df['bWendy'].str查看返回对象,如下图所示# 字符串替换,将字符串中的°C去掉,返回Series对象df['bWendy'].str.replace('°C', '')# 查看字符串长度,方法与Python字符串大多相似df['bWendy'].str.len()使用str的startswith、contains等返回bool的Series

2022-03-27 21:01:39 1130

原创 Python - Pandas 对缺失值的处理方法

本文摘要:实例对这样一个不规则excel进行数据处理本代码主要演示各个功能的使用和解决思路,并不是完整程序。import pandas as pdstudf = pd.read_excel('xx.xlsx', skiprows=2) # 读取时跳过前两行# 检测空值studf.isnull()检测空值的返回结果# 单列检测空值studf['分数'].isnull()# 与isnull相反,非空为Truestudf['分数'].notnull()# 例如筛选没有空分

2022-03-26 16:31:21 1156

原创 Python - Pandas 数据统计函数

本文摘要:1.汇总类统计2.唯一去重和按值计数3.相关系数和协方差汇总类统计# 统计所有数字列结果df.describe()统计结果类似下图,索引分别表示:单词含义count总行数mean平均数std标准差min最小值25% 50% 75%分位数max最大值# 查看单列Series的数据df['bWendu'].mean()df['bWendu'].max()df['bWendu'].min()唯一去重和按值计

2022-03-26 13:54:45 944

原创 Python - Pandas 如何新增数据列

本文摘要:新增数据列1.直接赋值2.df.apply方法3.df.assgin方法4.按条件选择分组分别赋值直接赋值例子续接上回# df['High']、df['Low']其实是两个Series,相减返回仍是Series# 此处'High-Low'是要新增的新列名,新列数据为df表每行的High列和Low列的高低差df.loc[:, 'High-Low'] = df['High'] - df['Low']df.apply方法下面示例:新增一个’wendu_type’列,表示温度类

2022-03-26 13:29:04 6559

原创 Python - Pandas几种数据查询方法

本文摘要:数据查询方法【常用】df.loc方法,根据行、列的标签值查询df.iloc方法,根据行、列的数字位置查询df.where方法df.query方法**注意:**查询过程中数据类型会降维,要注意数据类型的转换。DataFrame >> Series >> Pyhon数据类型引入数据与题外话import pandas as pddf = pd.read_csv('xxx.csv')# 假设不用pd自动生成的0-n的数字索引,将日期设置为索引df.set_

2022-03-26 12:45:19 3285

原创 Python - 了解Pandas及其数据类型

本文摘要:Pandas数据读取、Pandas数据类型与转换读取文件类型查看数据属性# 查看数据形状,返回(行数,列数)dataframe.shape# 查看列名,返回Index(['id', 'name', 'grade'], dtype='object')dataframe.columns# 查看索引,返回RangeIndex(start=0, stop=100, step=1)dataframe.index# 查看每列的数据类型dataframe.dtypes# 查看前

2022-03-26 11:45:29 2271

原创 PM4PY - BPMN support

BPMN支持在pm4py,我们提供导入/导出/布局BPMN图表的支持。这些支持仅限于以下BPMN元素:Events:事件(开始/结束事件)Tasks:任务Gateways:网关(排他的,平行的,包容的)而且,我们提供在PM4PY中实施的流程模型的相互转换(例如:Petri nets 和BPMN 图标)导入import pm4pyimport osbpmn_graph = pm4py.read_bpmn(os.path.join("tests", "input_data", "runn

2022-03-24 15:56:50 679

原创 PM4PY - Process Trees

摘要:Process Trees在PM4PY中,我们为process trees(可视化、转换成Petri Net、日志生成)提供支持,导入导出,和生成他们的功能。导入导出Process Trees(pt)在PM4PY中,我们提供PTML格式导入导出pt。from pm4py.objects.process_tree.importer import importer as ptml_importertree = ptml_importer.apply("tests/input_data/runn

2022-03-22 16:58:38 977

原创 PM4PY - Filtering Event Data

摘要:过滤EVENT DATA(不理解)按时间范围过滤(Filtering on timeframe)(不确定)如果只对某段时间范围内的traces感兴趣,即时间包含(contain)在开始与结束时间内。例如:2011-03-09到2012-01-18这段时间内。第一段代码用于log对象,第二段代码用于dataframe对象(后面的代码示例都是如此)。from pm4py.algo.filtering.log.timestamp import timestamp_filterfiltered_log

2022-03-22 15:29:40 433

原创 PM4PY - Handling Event Data

随笔trace(轨迹):从头部到尾部走一次路径就算一次traceVariants(变体):不同的路径为一个变体process execution(流程执行)stochastic(随机)

2022-03-22 15:28:55 475 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除