UESTC 594 我要长高 (单调队列优化DP)

题意

给出一个序列,没两个之间差值乘C就是亏损的钱数,可以给一些数列以一定的代价变大,不能减小,求增加方案令最后的损失最小。

思路

令dp[i][j]表示第i个人身高为j时的当前损失。
我们能得到 dp[i][j]=min(dp[i1][k]+abs(jk)C+(x[i]j)(x[i]j))
我们需要枚举的有当前的人i,当前身高j前一个人身高k,枚举前一个人身高可以用单调队列优化掉,总复杂度 O(nh)

代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define LL long long
#define lowbit(x) ((x)&(-x))
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1|1
#define MP(a, b) make_pair(a, b)
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + 7;
const double eps = 1e-8;
const int MOD = 1000000009;
const double PI = acos(-1.0);

int dp[2][110];
int n, c;
int q[110];
int head, tail, cur;

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    while (scanf("%d%d", &n, &c) != EOF)
    {
        int x;
        scanf("%d", &x);
        cur = 0;
        for (int i = 0; i < x; i++)
            dp[cur][i] = INF;
        for (int i = x; i <= 100; i++)
            dp[cur][i] = (x - i) * (x - i);
        for (int i = 1; i < n; i++)
        {
            scanf("%d", &x);
            cur ^= 1;
            head = tail = 0;
            for (int j = 0; j <= 100; j++)
            {
                int num = dp[cur^1][j] - c * j;
                while (head < tail && q[tail-1] > num)
                    tail--;
                q[tail++] = num;
                if (j < x)
                    dp[cur][j] = INF;
                else
                    dp[cur][j] = q[head] + j * c + (x - j) * (x - j);
            }
            head = tail = 0;
            for (int j = 100; j >= 0; j--)
            {
                int num = dp[cur^1][j] + j * c;
                while (head < tail && q[tail-1] > num)
                    tail--;
                q[tail++] = num;
                if (j >= x)
                    dp[cur][j] = min(dp[cur][j], q[head] - j * c + (x - j) * (x - j));
            }
        }
        int ans = INF;
        for (int i = 0; i <= 100; i++)
            ans = min(ans, dp[cur][i]);
        printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值