打印菱形
题目:从键盘输入一个整数n(1≤n≤100),打印出指定的菱形
输入:正整数n(1≤n≤100)
输出:指定的菱形。第一行前面有n-1个空格,第二行有n-2个空格,以此类推。
输入:5
import java.util.Scanner; public class 打印菱形 { public static void main(String[] args) { Scanner s= new Scanner(System.in); //输入菱形的的列数 int a=0; a=s.nextInt(); if(a%2==0) { for (int i=0;i<(a)/2;i++) { for(int j=0;j<a/2-(i+1);j++) { System.out.print(" "); } //打印空格 for (int j=(a/2-(i+1));j<(a-(a/2-(i+1)));j++) { System.out.print("*"); }//打印星号 System.out.println(); } //以上是打印菱形的上半部分,比如菱形的列数是6,则输出前三行(菱形的上半部分) //以下是打印菱形的下半部分,比如菱形的列数是6,则输出后两行(菱形的下半部分) for(int i=a/2;i<a-1;i++) { for (int j=0;j<i-(a/2-1);j++) { System.out.print(" "); }//打印空格 for (int j=i-(a/2-1);j<a-(i-(a/2-1));j++) { System.out.print("*"); }//打印星号 System.out.println();//一行输出则换行 } }else { for (int i=0;i<=(a/2);i++) { for (int j=0;j<(a/2-i);j++) { System.out.print(" "); } for(int j=(a/2-i);j<(a-(a/2-i));j++) { System.out.print("*"); } System.out.println(); } //以上是打印菱形的上半部分,比如菱形的列数是7,则输出前四行(菱形的上半部分) //以下是打印菱形的下半部分,比如菱形的列数是7,则输出后三行(菱形的下半部分) for (int i=(a/2+1);i<=a-1;i++) { for (int j=0;j<i-(a/2);j++) { System.out.print(" "); } for (int j=i-(a/2);j<a-(i-(a/2));j++) { System.out.print("*"); } System.out.println(); } } } }
求一个3*3矩阵对角线元素之和
题目:给定一个3*3的矩阵,请你求出正对角线元素之和
输入:按照行优先顺序输入一个3*3矩阵,每个矩阵元素均为整数
输出:对角线元素之和
输入:
1 2 3 2 2 3 3 2 3
输出:
6
import java.util.Scanner; public class 求一个矩阵对角线元素之和 { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); // 定义一个3x3的矩阵 int[][] matrix = new int[3][3]; // 从控制台读取矩阵的值 System.out.println("请输入3x3矩阵的值:"); for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[i].length; j++) { matrix[i][j] = scanner.nextInt(); } } // 计算主对角线和副对角线元素之和 int[] sums = calculateDiagonalSums(matrix); // 输出结果 System.out.println("主对角线元素之和: " + sums[0]); System.out.println("副对角线元素之和: " + sums[1]); scanner.close(); } private static int[] calculateDiagonalSums(int[][] matrix) { int mainDiagonalSum = 0; int secondaryDiagonalSum = 0; // 遍历矩阵 for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[i].length; j++) { // 检查是否为主对角线元素 if (i == j) { mainDiagonalSum += matrix[i][j]; } // 检查是否为副对角线元素 if (i + j == 2) { secondaryDiagonalSum += matrix[i][j]; } } } return new int[]{mainDiagonalSum, secondaryDiagonalSum}; } }
知识点
对角线
给你一个大小为 m x n
的矩阵 mat
,请以对角线遍历
的顺序,用一个数组返回这个矩阵中的所有元素
算法思路
-
对角线遍历,如图我们是33矩阵,可以看出对角线是5条,如果是22的就是3条,4*4的就是7条,可以得出结论,对角线的条数是 i=n+m-1条,所以便利条件就是 i<n+m-1。
-
如图,对家线上面的每个元素的坐标和为该对角线的第几条数,如(2,1),(1,2)所在对角线为3,所以得出元素的坐标x,y与i的关系为:x+y = i。
-
遍历方法:只要我们确定好遍历的起点和终点就好了,通过观察,我们发现,当i为偶数时,对角线从上往下遍历,当i为奇数时,对角线从下往上遍历。
-
我们发现i为偶数时,当i=0时,他的起始位置跟终止位置都是0,所以i<n-1时,起始坐标为x=i,终止坐标为x=0
-
当偶数为2时,我们发现起始坐标为(2,0),种植坐标为(0,2),我们得出结论,当i>=n-1时,起始点坐标x=n-1,终止点的坐标为y = m-1,根据1,2中的关系得出,x=i-(m-1)。
-
所以偶数对角线遍历时起止点的x坐标为min(i,i-1),结束点的x坐标为max(0,i-(m-1)),而坐标y就是i-x
-