把一个类存放在硬盘,并通过代码读取类的信息,输出到屏幕上

<span style="font-size:18px;">import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

//必须继承Serializable 才能实现序列化 ,才可以传输
//ObjectOutputStream
//把一个类存放在硬盘,并通过代码读取类的信息,输出到屏幕上
class Stu implements Serializable {
	/**
	 * 
	 */
	private static final long serialVersionUID = 1L;
	String name;
	int age;

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}

	public int getAge() {
		return age;
	}

	public void setAge(int age) {
		this.age = age;
	}

	public Stu() {
		super();
		// TODO Auto-generated constructor stub
	}

	public Stu(String name, int age) {
		super();
		this.name = name;
		this.age = age;
	}

	@Override
	public String toString() {
		return "Stu [name=" + name + ", age=" + age + "]";
	}

}

public class Demo8 {
	public static void main(String[] args) {
		Stu stu = new Stu("zhangsan", 18);
		try (ObjectOutputStream oos = new ObjectOutputStream(// 从内存写入到硬盘
				new FileOutputStream(new File("9988.txt")))) {// 如果不写路径,默认会建立在项目下
																// 和src同级别的目录
			oos.writeObject(stu);
			oos.flush();
		} catch (Exception e) {

		}

		try (ObjectInputStream ois = new ObjectInputStream(new FileInputStream(// 从硬盘读取到内存
				new File("9988.txt")))) {
			Stu stu2 = (Stu) ois.readObject();
			System.out.println(stu2);

		} catch (Exception e) {

		}

	}

}
</span>

项目新建**.ipynb文件 ,独立实现下列python3程序——读取housing数据集,进行基于Pandas数据分析 Ipynb文件在主体程序中的部分代码如下: #获取数据 #导入python scikit, pandas, numpy等模块 # Python ≥3.5 is required import sys assert sys.version_info >= (3, 5) Scikit-Learn ≥0.20 is required import sklearn assert sklearn.__version__ >= "0.20" import pandas as pd # 主要的导入模块 import numpy as np import os import tarfile import urllib.request # 导入画图的模块,为后面的画图做准备 %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # 定义如何在本地目录里保存figure PROJECT_ROOT_DIR = "." CHAPTER_ID = "end_to_end_project" IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension) print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) # 利用pd的readexcel,read_csv读取DataFrame数据结构,存入housing中 housing=#此处填入利用read_csv读取所在硬盘上的housing_csv文件 #添加代码,利用pd.head(),tail()函数在屏幕上显示出数据表前5行的数据,和倒数5列的数据, #添加代码,利用pandas的info(),describe()函数展示数据表的详情。 %matplotlib inline import matplotlib.pyplot as plt #这里需要加入代码,利用hist()函数显示保存列属性的直方图 save_fig("attribute_histogram_plots") plt.show() #下列自定义函数split_train_test用于划分训练集和测试集,其中test_ratio是划分比例 import numpy as np #导入numpy def split_train_test(data, test_ratio): #定义split_train_test函数 shuffled_indices = np.random.permutation(len(data)) #随机生成data数据的索引 test_set_size = int(len(data) * test_ratio)#根据测试数据的占比,计算测试集的尺寸 #shuffleded_indices数组中从0到test_set_size-1的存放的test_set随机data索引 test_indices = shuffled_indices[:test_set_size] #shuffleded_indices数组中从test_set_size到len(data)-1的存放的train_set随机的data索引 train_indices = shuffled_indices[test_set_size:] #根据随机索引号test_indices和train_indices通过iloc函数获取测试集test_set和训练集train_set return data.iloc[tra
最新发布
03-25
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值