pytorch深度学习基础(五)——SoftMax函数反向传递公式推导及代码实现

SoftMax函数介绍

简介

softmax函数是常用的输出层函数,常用来解决互斥标签的多分类问题。当然由于他是非线性函数,也可以作为隐藏层函数使用

公式

假设我们有若干输入[x1, x2, x3…xn],对应的输出为[y1, y2, y3…yn],对于SoftMax函数我们有
y i = e x i ∑ k = 0 e x k y_i= \frac{e^{x_i}}{\sum_{k=0} e^{^{x_k}}} yi=k=0exkexi

图像

在这里插入图片描述

反向传递公式推导

SoftMax函数比较特殊,他有多个输入和输出,并且每个输出与所有的输入都有关,所以这个函数输出对于多个输入都有一个偏导数,也就是SoftMax可以得到多个偏导数。对于SoftMax我们有两种情况

当输入坐标与输出坐标相对应时

∂ y i ∂ x j = ∂ y i ∂ x i \frac{\partial y_i}{\partial {x_j}}=\frac{\partial y_i}{\partial {x_i}} xjyi=xiyi
= e x i ⋅ ( ∑ k , i = j e x i ) − e x i ⋅ e x i ( ∑ k , i = j e x k ) 2 = \frac{e^{x_i} \cdot (\sum_{k,i=j} e^{x_i})-e^{x_i} \cdot e^{x_i}}{(\sum_{k, i=j}e^{x_k})^2} =(k,i=jexk)2exi(ki=jexi)exiexi
= e x i ∑ k , i = j e x k − ( e x i ∑ k , i = j e x k ) 2 =\frac{e^{x_i}}{\sum_{k, i=j}e^{x_k}}-(\frac{e^{x_i}}{\sum_{k, i=j}e^{x_k}})^2 =

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值