文章目录
前言
深度学习和大语言模型的部署不免会用到Linux系统,在本章中将详细介绍配置英伟达驱动、Cuda、cudnn、Conda、Pytorch、Pycharm等Python深度学习环境,为支持深度学习和大语言模型运行提供支持。
安装驱动
查看是否已经安装了驱动
通过以下命令查看是否安装好了驱动
nvidia-smi
如果没有安装驱动,会显示类似信息,我们可以看到不同的ubuntu版本有不同的驱动版本
查看系统版本
lsb_release -a
安装驱动
根据对应的版本,执行安装命令即可
sudo apt install nvidia-utils-550-server
然后重新查看一下显卡信息
nvidia-smi
显示以下信息说明驱动安装成功
下载安装Cuda
首先从官网选取合适的系统
官网地址:https://developer.nvidia.com/cuda-downloads
选好后往下拉依次执行以下命令
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-8
sudo apt-get install -y nvidia-open
sudo apt-get install -y cuda-drivers
编辑环境变量
用以下命令打开环境变量
sudo vim ~/.bashrc
在后面添加以下信息
export <