Linux系统管理(十七)——配置英伟达驱动、Cuda、cudnn、Conda、Pytorch、Pycharm等Python深度学习环境


前言

深度学习和大语言模型的部署不免会用到Linux系统,在本章中将详细介绍配置英伟达驱动、Cuda、cudnn、Conda、Pytorch、Pycharm等Python深度学习环境,为支持深度学习和大语言模型运行提供支持。

安装驱动

查看是否已经安装了驱动
通过以下命令查看是否安装好了驱动

nvidia-smi

如果没有安装驱动,会显示类似信息,我们可以看到不同的ubuntu版本有不同的驱动版本
在这里插入图片描述
查看系统版本

lsb_release -a

在这里插入图片描述
安装驱动
根据对应的版本,执行安装命令即可

sudo apt install nvidia-utils-550-server

然后重新查看一下显卡信息

nvidia-smi

显示以下信息说明驱动安装成功
在这里插入图片描述

下载安装Cuda

首先从官网选取合适的系统
官网地址:https://developer.nvidia.com/cuda-downloads
在这里插入图片描述
选好后往下拉依次执行以下命令
在这里插入图片描述

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-8
sudo apt-get install -y nvidia-open
sudo apt-get install -y cuda-drivers

编辑环境变量

用以下命令打开环境变量

sudo vim ~/.bashrc

在后面添加以下信息

export <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值