关于安装Pytorch无法调用GPU运算的解决方案之一
解决torch.cuda.is_available()返回False
该文章解决的是使用Anaconda通过conda命令在虚拟环境中安装Pytorch后发现实际运行代码无法使用GPU进行加速,后输入torch.cuda.is_available()发现返回False的问题。
如果你是使用pip进行安装,那么请出门左转寻找适合你的解决方案,谢谢。
原因之一:错下了CPU版本的Pytorch
当你使用了国内的Anaconda开源镜像站仓库时,如果你使用的代码所用的Anaconda虚拟环境采用的是Python版本为<=3.7
或者说在3.8
之前的版本的话,此时由于最新版本的Pytorch并不支持(官网NOTE: Latest PyTorch requires Python 3.8 or later. For more details, see Python section below.),导致conda命令安装的自动会是最后一个支持的版本Pytorch1.13.1
。
问题就出现在这里,在Pytorch2.0.0
之前的所有的版本,其最后支持的CUDA版本为11.7
。此时如果你用官网提供的conda命令安装的话(如下图)。
在这里我想补充一点,因为按照一般人的思维来说的话,我们进到这个Pytorch的官网,肯定是优先按照他最先给出的这一个安装教程去安装Pytorch(如下图),并且即使要运行的代码所要求的是Pytorch的老版本,我们还是会先入为主地认为新版本兼容老版本(这点在CUDA版本上也是相同的道理,我相信你已经在别的教程中知道了如何看自己电脑显卡的CUDA版本)。
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch