Flask-SQLAlchemy多表对单模型

前言

在 Flask 中 Flask-SQLAlchemy 应该是最常用的 ORM 了,通过它来构建 Model 来映射数据库中的表。通常情况下都是一个表对应一个模型,这种方案很简单。那么如果是多个表对应一个模型的情况下,该如何处理呢?接下来结合一个具体的案例来讲解这一内容。

案例

现在我有一个数据库 test.db,它的表如下:

 

有很多表并且表名类似,而且表名类似的表的结构相同,以 UPS1_20190716 为例,看一下它的表结构:

Id
workTime
device
status
temp

那么如何定义Model呢?像下面这样?

class UPS120190719:
    __tablename__ = 'UPS1_20190716'
    Id = db.Column(db.Integer,primary_key=True)
    workTime = db.Column(db.Time)
    ...

class UPS220190716:
    __tablename__ = 'UPS2_20190716'
    ...

显然这样子代码不够优雅,有重复的代码,需要优化。那么该怎么解决呢?

解决方案

有俩种方案都可以解决上述问题,不过俩种方案应用场景略有不同,可以根据实际情况来决定。

类的继承

第一种方法就是利用类可以继承的特性去实现了,我们定义一个表的基类,然后其它 UPS 表继承 UpsBase即可::

class UpsBase:
    Id = db.Column(db.Integer,primary_key=True)
    workTime = db.Column(db.Time)
    ...

class UPS120190716(UpsBase):
    __tablename__ = 'UPS1_20190716'

class UPS220190716(UpsBase):
    __tablename__ = 'UPS2_20190716'

当表的数量固定这是一个很好的解决方案,但是一旦当数据库的表会发生变动,比如隔天增长几张表,显然我们不太可能天天定义新的Model,然后重新部署服务的。这个情况就需要用到第二种解决方案了。

动态定义表类

同样的这种方法也需要首先定义表的基类:

class UpsBase:
   Id = db.Column(db.Integer,primary_key=True)
   workTime = db.Column(db.Time)
   ...

但是这里就不需要定义其它 UPS 表的类了,这里是动态定义,那就意味着,我们只在需要的时候创建,那么如何创建呢?在 Python 中可以使用 type 函数动态创建类,需要注意的时,在创建时需要设置 __tablename__ 的值。

Ups1_20190716 = type('UPS120190716', (UpsBase, db.Model), {'__tablename__':'UPS1_20190716'})

之后就可以创建实例了:

Ups = Ups1_20190716()
### 如何使用 Flask-SQLAlchemy 实现联查 在 Flask-SQLAlchemy 中,即使未显式定义外键关系,仍然能够通过 SQLAlchemy 的 `join` 方法实现联合查询。以下是具体方法以及示例: #### 使用 `join` 进行联查 SQLAlchemy 提供了灵活的 `join` 方法用于执行不同类型的连接操作(如 INNER JOIN、LEFT OUTER JOIN 等)。下面是一个基于 Flask-SQLAlchemy联查实例。 假设我们有两个模型:`User` 和 `Post`,它们分别代用户和帖子的关系。虽然这两个之间没有外键约束,但我们仍可通过手动指定连接条件完成查询。 ```python from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() class User(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50)) class Post(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(100)) user_id = db.Column(db.Integer) # 查询所有用户的帖子 query_result = db.session.query(User.name, Post.title).\ join(Post, User.id == Post.user_id).all() # 手动指定了连接条件[^4] print(query_result) ``` 上述代码展示了如何通过 `join` 方法将 `User` 与 `Post` 相连,并提取所需字段。这里的关键在于明确传递给 `join` 函数的第二个参数作为连接条件。 #### 不依赖外键的联查方式 如果不想或者无法在外键上建立硬性约束,则可以直接依靠 SQL 条件达式构建逻辑上的关联。这种方式尤其适用于那些历史遗留系统或第三方数据库结构不可更改的情况。 例如,在某些场景下可能需要从多个无直接联系的格中抽取数据并组合展示。此时可采用类似以下形式的操作: ```python result = db.session.query(TableA.column_a, TableB.column_b).\ filter(TableA.some_column == TableB.other_column).all() ``` 此片段明即使缺乏正式声明的外键绑定,只要存在共同参照项即可达成预期效果[^1]。 #### ORM 映射基础回顾 值得注意的是,为了更好地理解和运用这些高级特性,掌握 SQLAlchemy 的基本概念至关重要。特别是它的 **对象关系映射 (ORM)** 功能使得我们可以把 Python 类当作数据库里的来对待,极大地简化了开发流程[^2]。 --- ### 总结 综上所述,借助于 SQLAlchemy 强大的 API 支持,无论是常规情况还是特殊需求下的联合查询都能得到妥善解决。只需合理设置过滤器及调用相应函数便可轻松获取目标记录集合。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值