力扣 62. 不同路径 [线性DP]

131 篇文章 0 订阅
20 篇文章 0 订阅
这篇博客讨论了一个机器人在网格中找到从左上角到右下角不同路径的问题。通过引入动态规划(DP)的概念,作者展示了如何利用状态转移方程`dp[i][j]=dp[i][j-1]+dp[i-1][j]`来解决这个问题。文章提供了两种实现方式:一种是简单的动态规划,另一种是递归实现,但由于递归可能导致超时,所以推荐使用动态规划。此外,还提到了记忆化搜索的优化技巧。
摘要由CSDN通过智能技术生成

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

img

输入:m = 3, n = 7
输出:28
示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下
    示例 3:

输入:m = 7, n = 3
输出:28
示例 4:

输入:m = 3, n = 3
输出:6

解释与代码

上课没办法太集中写,再刷了一题力扣,线性DP

DP就是有多个的状态转移,也就是每一个dp状态与前面的dp状态有关,不知道大家写过爬楼梯没有,爬楼梯就是dp[n] = dp[n-1] + dp[n-2],每一次踩楼梯无非就是两种情况,踏一格和踏两格,那么我们可以和这道题进行对比,我们首先分析,到每一个格子的情况是不是可以由到前面其他格子的情况组成,然后我们可以发现,每个格子由上面和左边的格子的情况相加而成即dp[i][j] = dp[i][j-1] + dp[i-1][j];的由来,然后由于第一行和第一列的情况都是只有一种可能,然后,就可以写出代码了

class Solution {
public:
    int dp[109][109];
    int uniquePaths(int m, int n) {
        for (int i=1; i<=m; i++) dp[i][1] = 1;
        for (int i=1; i<=n; i++) dp[1][i] = 1;
        for (int i=2; i<=m; i++) {
            for (int j=2; j<=n; j++) {
                dp[i][j] = dp[i][j-1] + dp[i-1][j];
            }
        }
        return dp[m][n];
    }
};

递归写法:(超时)

代码反而意外的简单

class Solution {
public:
    int uniquePaths(int m, int n) {
        if (m==1 || n==1) return 1;
        return uniquePaths(m-1, n) + uniquePaths(m, n-1);
    }
};

记忆化写法:

class Solution {
public:
    int dp[109][109];
    int uniquePaths(int m, int n) {
        for (int i=1; i<=m; i++) dp[i][1] = 1;
        for (int i=1; i<=n; i++) dp[1][i] = 1;
        if (dp[m][n] != 0) return dp[m][n];
        return dp[m][n] = uniquePaths(m-1, n) + uniquePaths(m, n-1);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值