《商务与经济统计》Python实现笔记(三)

方差分析

单因素方差分析(多个总体均值相等的假设检验)

import scipy.stats as stats

a = [58,64,55,66,67]
b = [58,69,71,64,68]
c = [48,57,59,47,49]

stats.f_oneway(a,b,c)
F_onewayResult(statistic=9.176470588235295, pvalue=0.0038184120755124806)
import pandas as pd
import numpy as np
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

data = pd.read_excel(r"C:\Users\liuhao\Desktop\a.xls")

model = ols('数量 ~ 方法',data).fit()
anovat = anova_lm(model)
anovat

变量dfsum_sqmean_sqFPR(>F)
方法2.0520.0260.0000009.1764710.003818
Residual12.0340.028.333333NaNNaN

随机化区组设计

随机分组,减少分组设计导致的随机误差

import pandas as pd
import numpy as np
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

data = pd.read_excel(r"C:\Users\liuhao\Desktop\s.xls")


model = ols('压力值 ~ 管理员+系统',data).fit()
anovat = anova_lm(model)
anovat
变量dfsum_sqmean_sqFPR(>F)
管理员5.030.06.03.1578950.057399
系统2.021.010.55.5263160.024181
Residual10.019.01.9NaNNaN

变量管理员为区组设计,系统间差异 p =0.024<0.05,差异显著

析因实验(多因素方差分析)

import pandas as pd
import numpy as np
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

data = pd.read_excel(r"C:\Users\liuhao\Desktop\a.xls")

data.head()

model = ols('分数 ~ 课程+院校+课程*院校',data).fit()#课程*院校为交互作用
anovat = anova_lm(model)
anovat

课程院校分数
复习班500
复习班540
复习班艺术480
复习班580
复习班460
变量dfsum_sqmean_sqFPR(>F)
课程2.06100.03050.0000001.3828720.299436
院校2.045300.022650.00000010.2695210.004757
课程:院校4.011200.02800.0000001.2695210.350328
Residual9.019850.02205.555556NaNNaN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值