秦九韶算法

秦九韶算法,也称作霍纳法则(Horner's method),是一种高效计算多项式的方法。它主要用于减少计算多项式时所需的乘法和加法次数。

对于一个给定的多项式P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,传统的计算方法需要大量的乘法和加法操作,特别是当多项式的阶数较高时。秦九韶算法通过重写多项式的形式,使得计算过程更加高效。

秦九韶算法的基本思想

假设我们有一个n阶多项式 P(x),可以表示为:
P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0

秦九韶算法的核心在于将上述多项式重写成如下形式:

P(x) = (\dots((a_nx + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0

这样做的好处是,每次迭代只需要做一次乘法和一次加法,从而大大减少了总的计算量。对于一个n阶多项式,传统方法需要大约(n(n+1)/2)次乘法,而使用秦九韶算法则只需要n次乘法和n次加法。

推导过程

我们考虑一个具体的例子,比如一个三阶多项式:
P(x) = 2x^3 + 3x^2 - 2x + 5

按照秦九韶算法的思想,我们可以将这个多项式重写为:
P(x) = (2x + 3)x - 2)x + 5

这样,计算P(x)时,我们按照以下步骤进行:

1. 首先计算最内层的括号 (2x + 3)。
2. 将上一步的结果乘以(x),即((2x + 3)x)。
3. 将上一步的结果加上下一个系数(-2),即(((2x + 3)x - 2))。
4. 最后将上一步的结果乘以x并加上最后一个系数5,得到最终的结果((((2x + 3)x - 2)x + 5))。

一般化的过程

对于任意n阶多项式P(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0,我们可以将其重写为:
P(x) = (...((a_nx + a_{n-1})x + a_{n-2})x +...+ a_1)x + a_0

这样,计算P(x) 时,我们从最高次项开始,逐步向低次项推进,每一步都执行一次乘法和一次加法,直到最后加上常数项a_{0}

 应用实例

假设我们要计算多项式P(x) = 3x^5 - 2x^3 + x + 7x = 3处的值,根据秦九韶算法,我们可以这样计算:

1. b_5 = 3
2. b_4 = 3*3 + 0 = 9
3. b_3 = 9*3 - 2 = 25
4. b_2 = 25*3 + 0 = 75
5. b_1 = 75*3 + 1 = 226
6. b_0 = 226*3 + 7 = 685

因此,P(3) = 685。

算法代码

秦九韶算法不仅适用于手动计算,也非常适合编程实现,因为它可以很容易地通过循环结构来实现。

算法代码介绍可移步本人写的另外一篇文章秦九韶算法及其mathematica代码-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值