- 博客(1112)
- 收藏
- 关注

原创 2024终极指南:AI大模型从入门到精通
AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。
2024-07-05 16:42:03
2281

原创 OpenAI最强大模型ChatGPT-4o,论文降重小技巧,国内直接使用
写论文的时候,免不了要引经据典,要引用名人的话,要引用名人的故事,要使用公式,要把定义写明白,这些内容就决定了你的论文有着居高不下的重复率,甚至是后期无论如何怎么修改,都无法撼动改变一点点这个恼人的数字。因为你要知道,论文,老师是看你给他发的第一稿,而不是查重前的第一稿,你即使内容修改,但是愿意还在,就没有问题。不过,删除法的前提是你的论文字数足够多,假设学校的要求是4万字及以上,那么,写了五万字的你就可以通过这一方法降重。系统现在对于表格的检测还不完善,在表格中重合的字数是不计入到总的重合率中的。
2024-06-28 10:55:19
2589
原创 AI大模型产品经理修炼手册:AI产品经理零基础入门到精通,从这里启航!
市面上不同的公司对产品经理的定位有很大的差别,一名合格的产品经理是能对软件产品整个生命周期负责的人。AI产品经理和通用型软件产品经理的底层思考框架是一样的,都是要经历产品立项、需求分析、产品设计、产品执行管理(研发测试)、验收、分析迭代这几个阶段。:通用型产品经理,只需要把业务流程、痛点理清楚,在进行逻辑处理、界面流程化,软件化即可。而AI产品是AI技术为出发点,为各行各业提供全新的解决方案,甚至会变更原来的业务流程和使用方式。人工智能已经成为国家的重点发展方向之一,各行各业也加入到AI这个大家庭。
2025-04-27 15:46:50
503
原创 DeepSeek微调教程:小白也能轻松上手,低配笔记本也能从零开始,DeepSeek微调就是这么简单!
GGUF 是一种高效的格式,它支持多种量化方法(如 4 位、8 位、16 位量化),可以显著减小模型文件的大小,便于存储和传输,适合在资源受限的设备上运行模型,例如在 Ollama 上部署时。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
2025-04-27 15:40:19
548
原创 引领未来!2025年中国十大‘大模型+数据分析’最佳实践案例揭晓
• 提取好的数据交由大模型③(擅长总结归纳)处理,生成自然语言回复,同时可视化引擎可输出可视化报表。注:数据分析工作流的各个环节需要不同的大模型能力,上图所示大模型①、大模型②、大模型③为擅长不同能力方向的大模型能力示意,在实际落地过程中,企业可以选择在同一个大模型上训练多种能力,也可以选择多个大模型,在某些场景下还可以利用大小模型相结合的方式。这种对话式的数据分析可以让用户以自然语言进行数据查询,还可以与数据可视化功能相结合,为任何用户(即使是非技术人员)赋予与数据交互的能力。
2025-04-27 15:37:38
310
原创 LangChain MCP适配器如何实现MCP工具的无缝集成
那么,这就引出了我们今天的主题:Langchain ,它正是为了帮我们解决上述问题而生,Langchain 是一个开源框架,它支持用户将类似 GPT-4一样的大型语言模型与第三方外部计算和数据源相结合,实现复杂AI业务场景。那什么又是LangChain MCP?LangChain MCP 适配器是一个功能强大的工具,它能够将Anthropic Model Context Protocol (MCP) 工具与LangChain 和 LangGraph 无缝集成。
2025-04-27 15:31:56
259
原创 MCP企业级应用方案初探
MCP企业方案描述:1、dify plus (用户体系)①用户管理②token消耗③应用中心2、dify 的MCP客户端 应用实践3、服务发现 nacos +Higress 聚合MCP 服务的网关和统一身份认证PS:以上组合还在验证实践中,有兴趣的朋友加微信,多多交流。关注公众号,回复“MCP方案”,查看方案组合描述,大厂真是哪里都不想落下,阿里百炼MCP Server市场也上线了,MCP生态不断丰富。
2025-04-27 15:28:03
266
原创 重磅!MetaGPT、Mila、斯坦福、耶鲁、谷歌联合打造:264页Agent综述震撼发布
2025 年,Agent 的热度持续升高,无论是 MCP 协议的普及让整个 Agent 的生态被打开,还是 A2A 协议的发布,让我们对未来多 Agents 的生态充满了期待。但目前大部分 Agent 仅是基于 LLM 的简单延伸,距离真正的通用的智能尚有距离,在目前的设计下,面对复杂的真实世界,Agent 面临着推理规划、长期记忆、自主学习以及安全对齐等核心能力不足的问题。为了明确定义我们距离通用智能的差距,以此来构建下一代 Agent,
2025-04-27 15:26:16
160
原创 大模型学习路径,手把手给你拆解大模型学习路线,学完这些你就是大模型大师!
在掌握机器学习之前,理解支撑这些算法的基本数学概念非常重要。:这是理解许多算法(特别是深度学习算法)的关键。主要概念包括向量、矩阵、行列式、特征值和特征向量、向量空间以及线性变换。:许多机器学习算法涉及到连续函数的优化,这需要理解导数、积分、极限和级数。多变量微积分以及梯度的概念也很重要。:这些知识对于理解模型如何从数据中学习并进行预测至关重要。主要概念包括概率理论、随机变量、概率分布、期望、方差、协方差、相关性、假设检验、置信区间、最大似然估计和贝叶斯推断。有的时候临时抱佛脚也是可以的。
2025-04-25 17:08:02
799
原创 AI大模型知识点梳理:大模型是什么?如何学习大模型?非常详细收藏我这一篇就够了!
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
2025-04-25 17:05:10
608
原创 什么是AI大模型?大模型入门到精通,非常详细,存一下吧很难找全的!
典型模型参数对比(2023)models = {保持学习:每周跟踪arXiv最新论文实战优先:从微调开源模型(如LLaMA)开始关注伦理:建立AI安全防护意识技术交流:你在实际项目中遇到过大模型应用的哪些挑战?欢迎评论区讨论!
2025-04-25 17:03:26
578
原创 380篇文献!首份Agentic大模型最新技术综述
Agentic LLMs是指那些能够作为智能Agent行动的大语言模型,它们具备推理、行动和交互的能力,基于此对相关技术进行综述,并提出了一个研究议程,指导未来研究方向。Agentic大语言模型(LLM)分类体系的三个类别——推理、行动和交互(以红色表示)之间的良性循环。影响某一类别的概念以绿色表示。图中还标示了反馈循环,即推理、行动和交互产生新的数据,用于预训练和微调LLMs。一、推理(Reasoning)详细讨论了代理型大语言模型(Agentic LLMs)在推理能力方面的研究进展和技术方法。
2025-04-25 16:45:14
620
原创 一文搞懂RAG与本地知识库,向量数据库,以及知识图谱之间的区别与联系
目的是解决大模型的缺陷问题,因此就有了RAG技术来帮助大模型,简单来说RAG就相当于给大模型配备了一个资料库,遇到不懂的问题不要胡扯,先去查查资料。第二步就是检索,有了这些资料之后,怎么才能根据不同的问题,从中找到相关联的资料;比如说,你想让大模型告诉你怎么做西红柿炒蛋,你需要的是使用RAG技术检索到做番茄炒蛋的内容,而不是告诉大模型哪里大米产量高,哪里发生了自然灾害,原子弹怎么造。而这个资料库可以有多种不同的组织形式,比如以文档,书籍,或者网页,视频,甚至是会议记录等形式存在,也可能是多种形式的混合。
2025-04-25 16:40:22
442
原创 突然发现图解深度学习数据蒸馏和知识蒸馏,真的好清晰
原始数据集:包含大量的、可能包含冗余和噪声的数据。数据预处理:对原始数据进行清洗、去噪等处理,以提高数据质量。特征提取:从数据中提取出关键特征,这些特征能够反映数据的本质属性。数据降维:通过减少数据的维度,去除冗余信息,得到更为简洁的数据集。精炼数据集:经过上述步骤处理后的数据集,具有更高的质量和代表。教师模型(已训练):一个高精度、但可能较为复杂的大型模型。提取知识:从教师模型的输出(如概率分布、中间特征等)中提取出有用的知识。学生模型(待训练):一个轻量化、但性能可能较低的小型模型。
2025-04-25 16:37:51
933
原创 从入门到专家:大模型工程师的「地狱级」学习路线(附500小时魔鬼训练表)
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2025-04-24 11:36:34
1054
原创 2024大模型开源项目汇总:最新资源,非常详细收藏我这一篇就够了!
当大模型成本逐渐降低,可靠性提升后,这意味着越来越多的业务应用将会与 LLM 结合,为了让这种结合更加顺畅,需要有与现有来支撑 LLM 应用开发的快速开发应用构建工具: 插件中心, 流程编排, Prompt工程, RAG, Agent模型开发工具: 训练数据管理, 模型调优, 模型评测, 模型部署对比说明可参考:**2.1 Dify:**开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。
2025-04-24 11:33:19
1018
原创 2025年大模型的典型落地场景总结
在云和传统辨别式AI市场增长疲软的情况下,2024年最容易搞出成绩的方向无疑是AIGC/大语言模型。目前,2024年马上过去3/4,我们看在这大半年的时间里,大模型都在哪些场景下落地了呢?全文共计2000余字,阅读大概需要5分钟从技术角度看,大模型最容易落地的场景是3个:RAG知识库、生成式BI、Agent智能体。1、RAG知识库:依靠向量、检索增强等技术,落地范围非常广。几乎各行各业都有自己的各种知识,这些知识都可以经过向量化、大模型的处理加工,让大模型可以基于行业知识做问答。
2025-04-24 11:31:14
825
原创 RAG超图革命!graphRAG进入群聊时代!
比喻与实际技术的核心联系超图中的"超边"正是为了解决多实体共同参与的复杂关系(n-ary facts)的问题;比喻里的一次"小组讨论"可以有多个人一起发言,体现多元关联。为什么这个对应关系能帮助理解?大家对"多人群聊"或"多人会议"的场景很熟悉,从而更容易明白"一个边可以连多个实体"在实际应用中会带来什么好处,以及如何对其进行检索与利用。比喻的局限性。
2025-04-24 11:29:13
852
原创 DeepSeek V3 | DeepSeek R1 | QwQ 32B 对不同问题回答效果测评
适用于简单任务,在复杂逻辑推理中风险较高。综合最优选择,从简单问题到中等复杂度任务均表现出色。适用于复杂、多解法需求的任务,但需注意资源消耗和限制条件的影响。
2025-04-24 11:20:10
1068
原创 英伟达Eagle 2.5重磅开源:8B参数性能挑战GPT-4o,附带全新数据集!
今天,英伟达、南京大学、香港理工大学、罗格斯大学团队合作推出一项最新成果:Eagle 2.5,简单来说这是一种用于长上下文多模态学习的视觉语言模型(VLM),为现有VLM打破局限性提供了一个创新解决方案。为了应对行业中长视频理解和高分辨率图像理解方面的挑战,英伟达团队引入了适用于这两项任务的一种通用框架,该框架还在长上下文数据训练的流程中纳入了多项效率优化措施。从测试结果来看,Eagle 2.5在长上下文多模态基准测试中展现了显著的性能,测试版本。
2025-04-24 11:16:05
855
原创 如何成为AI产品经理?2025年AI产品经理需要哪些必备技能?非常详细收藏我这一篇就够了!
1.AI产品经理是什么回答这个问题前我们首先得理清楚什么是AI产品经理,它和传统的互联网产品经理有什么区别。1.1 AI产品经理职责主要职责一方面是规划如何将成熟的AI技术应用在各个领域不同场景中,提升原有场景的效率或效果等;另一方面是基于业务方的需求如何用现有的AI技术或者AI技术组合予以实现,甚至有可能联合技术团队孵化新的AI软件解决方案或者AI硬件产品。1.2 AI产品经理与传统互联网产品经理的区别AI产品经理本身也只是产品经理的一种,并没有什么特殊性。
2025-04-23 15:12:20
932
原创 RAGFlow深度解析:从0到1搭建RAG知识库,一篇教程收藏足矣!
最近随着Deepseek的火爆,如何高效地整合海量数据与生成式模型成为了技术领域内的一大热点。传统的生成模型在回答复杂问题时常常依赖于预训练数据的广度与深度,而检索增强生成(Retrieval-Augmented Generation,简称RAG)则有效结合了检索与生成的优势,为各类应用场景提供了更为灵活、高效的解决方案。
2025-04-23 15:10:24
1134
原创 AI大模型本地部署神器:LM Studio工具使用指南,轻松实现模型部署!
今天先介绍下普通人如何部署自己的本地大模型。你可能会问:为什么要自己部署本地大模型?我想可能有这几个原因,看看是否准确:如果你不会科学上网,是不是访问其他国外模型基本没法用,相关速度也不是快,即便科学上网,有些模型是不是还要付费订阅高级版。自己是不是有些东西不想直接公开去给到大模型,害怕隐私和知识产品被大模型收集学到。在某个垂直领域,是不是想训练自己的大模型,然后结合自己的产品和业务来使用。
2025-04-23 15:08:10
988
原创 Qwen3深度分析:Transformers PR代码全面解读!
传统路由策略中,分配给不同专家的Token可能蕴含一些通用知识或信息。不同的专家可能会在各自的参数中获得这些通用知识,从而导致专家参数的冗余。若有专门的共享专家来捕捉和整合上下文中的通用知识,将缓解其他路由专家之间的参数冗余。这种冗余参数的减少有助于由更专业的专家构建更加参数高效的模型。为实现该目标,deepseek团队在细粒度专家划分的基础上进一步隔离一部分专家作为共享专家。无论路由模块如何,每个Token都将会被送入这部分共享专家。
2025-04-23 15:05:33
785
原创 一文搞懂提示词工程、RAG、微调,非常详细收藏我这一篇就够
方法比喻优势劣势提示词工程(PE)用言语指引高手施展已有武学快,能即时适应新任务受限于模型已有知识,无法学习新武功微调(Fine-tuning)闭关修炼,习得新武学精度最高,专精特定领域训练时间长,适应性低检索增强生成(RAG)随身携带武学秘籍,临阵查阅并施展灵活,知识可随时更新需要额外检索,响应速度较慢。
2025-04-23 15:00:35
996
原创 LLaMA-Factory微调指南:llama3模型的高效调优方法!
LLaMA-Factory 是一个用于大型语言模型(LLM)微调的工具,它旨在简化大型语言模型的微调过程, 使得用户可以快速地对模型进行训练和优化,以提高模型在特定任务上的性能。这个工具支持多种预训练的大型语言模型,例如 LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、 Gemma、Baichuan、ChatGLM 和 Phi 等。LLaMA-Factory 的特点包括:支持多种微调方法:它集成了连续预训练、有监督微调(SFT)、偏好对齐(RLHF)等多种微调方 法。
2025-04-23 14:58:16
640
原创 AI大模型神仙级入门教程(非常详细),从零基础入门到精通,从看这篇开始
AI大模型是指拥有极大参数量(通常在亿级甚至百亿级以上)的深度学习模型。这些模型经过大规模数据训练后,能够自动生成文本、回答问题、进行翻译等。它们的核心是深度学习,即使用多个神经网络层来提取数据特征从零基础到精通神仙级AI大模型并非易事,但通过这个详细的入门教程,你可以系统地学习和探索。如果你在学习过程中遇到问题,不要气馁,积极寻求帮助,持之以恒,终会掌握这项前沿技术。祝你在AI的大模型之旅中获得成功!
2025-04-22 15:13:28
1196
原创 训练大模型的目的,就是为了解决业务问题_大模型训练,非常详细收藏这一篇就够
训练大模型的目的,就是为了解决业务问题”学习机器学习的人大部分都知道怎么设计并训练一个模型,但开发模型的目的是为了解决业务问题,所以怎么使用大模型也是重中之重。刚训练好的大模型事实上虽然可以用,但由于没有用户接口,所以只能自己用,无法对外提供服务;所以,刚训练好的大模型需要经过一些处理才可以使用,包括数据预处理,接口开发等。huggingface官网地址:https://huggingface.co/models 需科学上网01、大模型加载与保存。
2025-04-22 15:09:50
851
原创 提示词(Prompt)工程从入门到精通:零基础详细指南,一篇足矣!
提示词工程,或称Prompt Engineering,是一种专门针对语言模型进行优化的方法。它的目标是通过设计和调整输入的提示词(prompt),来引导这些模型生成更准确、更有针对性的输出文本。在与大型预训练语言模型如GPT-3、BERT等交互时,给定的提示词会极大地影响模型的响应内容和质量。提示词工程关注于如何创建最有效的提示词,以便让模型能够理解和满足用户的需求。这可能涉及到对不同场景的理解、使用正确的词汇和语法结构,以及尝试不同的提示策略以观察哪种效果最佳。1、明确具体:加入场景要求、具体任务。
2025-04-22 15:07:56
770
原创 2025大模型研究框架(发展回顾、国内进展、海外进展、未来研判)|附58页文件下载
本文提供完整版报告下载,请查看文后提示。......文│国海证券。
2025-04-22 15:04:26
571
原创 多模态AI模型+对比特征=肿瘤学疾病推断预测新方向
现如今的临床决策大多都极度依赖多模态数据,而人工智能整合多模态数据的能力对推动临床医疗意义重大。基础模型在医学人工智能研究中崭露头角,其预训练于大量多样数据集可用于多种下游任务。然而,多模态人工智能模型发展面临临床环境中注释良好的多模态数据集稀缺的问题。在医学领域,尤其是病理学方面,虽有研究开发视觉 - 语言基础模型,但存在不足,如依赖对比学习需要配对数据、数据规模有限、应用任务较简单且未涉及治疗反应和结果局限性。因此,开发更强大的视觉 - 语言基础模型用于精准肿瘤学迫在眉睫。
2025-04-22 14:55:24
618
原创 什么是MCP和A2A?一文搞懂MCP和A2A,非常详细收藏这一篇就够了
SSE(Server-Sent Events,服务器发送事件)是什么?SSE是一种基于 HTTP 协议的技术,允许服务器向客户端单向、实时地推送数据。SSE是实时数据推送的"广播电台",开发者可以在客户端通过创建一个 EventSource 对象与服务器建立持久连接,服务器则通过该连接持续发送数据流,而无需客户端反复发送请求。在AI协作场景中,A2A协议利用SSE实现智能体间的实时状态同步。以为例,通过实现,可以构建一个基于地理信息服务的智能体协作框架。
2025-04-22 14:50:09
897
原创 25年大模型面试必问八股文,背完通过率98%,看我如何吊打面试官_大模型面经
正则化主要目的是控制模型复杂度,减小过拟合。正则化方法是在原目标(代价)函数 中添加惩罚项,对复杂度高的模型进行“惩罚”。L1:向量绝对值和,趋向于产生少量的特征,而其它的特征都为0,有助于处理高维数据集, 使权重稀疏。L2:向量平方和,会选择更多的特征,但这些特征都接近于0,使权重平滑。
2025-04-21 11:35:57
933
原创 AI教育辅助六大应用场景演示:教学设计、教案生成、教研活动等一网打尽!
随着人工智能(AI)技术的快速发展,AI在教育领域的应用日益广泛。AI教育辅助工具在教学设计、教案生成、教研活动设计、备课助手、课件PPT制作、智能互动课堂等方面发挥着重要作用。本文将深入探讨这六大应用场景,并演示AI教育辅助工具的实际应用。AI教育辅助工具可以根据学生的学习需求、兴趣爱好和能力水平,为教师提供个性化的教学设计建议。通过分析学生的学习数据,AI可以为教师推荐合适的教学内容、教学方法和评价方式,从而提高教学效果。为《旅游目的地管理》课程做教学设计,如下图:①人工智能/大模型学习路线。
2025-04-21 11:33:27
1068
原创 零成本部署本地知识库:deepseek+dify保姆级教程,轻松实现本地部署!
下载安装后查看版本号安装成功!搜索具体参数可参照配置表自行选择出现success安装成功!
2025-04-21 11:31:04
911
原创 OpenAI震撼发布:《智能体实用指南》,看完直接通过Agent【附PDF】
智能体就是“能自主完成任务的LLM系统”。它不仅仅是被动回应用户提问,而是具备主动理解、决策和执行的能力,能够:判断用户意图;规划任务流程;主动调用外部工具(如API、数据库或其他智能体);自主决定后续动作,甚至判断任务何时结束。举个例子,一个智能体可以独立完成客户退款流程,从收集订单信息、判断是否符合退款政策、调用接口执行退款,到最终通知用户,全流程无需人工介入。
2025-04-21 11:26:11
618
原创 大型语言模型在医学中的应用,非常详细收藏我这一篇就够!
大型语言模型(LLM)可以响应自由文本查询,而无需对相关任务进行专门培训,人们对其在医疗保健环境中的应用感到兴奋也担忧。ChatGPT是通过大语言模型(LLM)的精密微调产生的生成式人工智能(AI)聊天机器人,其他工具也经过类似的开发过程生成。本文概述了大型语言模型(LLM)应用程序(如ChatGPT)是如何开发的,并讨论了如何在临床环境中充分利用它们。还考虑了大型语言模型(LLM)的优势和局限性,以及它们提高医学临床、教育和研究工作效率和效果的潜力。
2025-04-21 11:20:47
515
原创 MCP架构实战:构建基于MCP的知识库答疑系统!
1.简单易用:仅一个创建实例步骤后即可开始使用,Serverless 模式无需管理容量和后续运维。2.低成本:完全按量计费,自动根据存储规模水平扩展,最大可扩展至 PB 级。当然如果采用本地知识库肯定是零成本,但这里实现的是一个企业级、可通过云共享的知识库。3.功能完备:支持全文、向量和标量等检索功能,支持混合检索。MCP Server知识库构建。
2025-04-21 11:13:01
751
1
原创 大模型学习路线_大模型学习路径详尽指南:零基础入门到精通,一篇收藏足矣!
在掌握机器学习之前,理解支撑这些算法的基本数学概念非常重要。:这是理解许多算法(特别是深度学习算法)的关键。主要概念包括向量、矩阵、行列式、特征值和特征向量、向量空间以及线性变换。:许多机器学习算法涉及到连续函数的优化,这需要理解导数、积分、极限和级数。多变量微积分以及梯度的概念也很重要。:这些知识对于理解模型如何从数据中学习并进行预测至关重要。主要概念包括概率理论、随机变量、概率分布、期望、方差、协方差、相关性、假设检验、置信区间、最大似然估计和贝叶斯推断。
2025-04-20 16:21:24
1224
原创 一文搞懂大模型:模型训练的基本原理、模型设计、模型训练
在之前的编程任务中,研发人员需要提前清楚程序运行的内部逻辑,并且用代码的形式把这些逻辑实现出来,且逻辑是确定性的,相同的输入会得到相同的输出。随着编程任务的复杂度越来越高,研发需要付出大量的工作去搞清楚程序运行的内部逻辑,时间和人力的消耗大,一些任务已经复杂到搞清楚全部运行逻辑是普通人力和团队无法承受的程度。且无法解决一些不确定性的任务,如一张图片里到底是一只猫还是一只老虎,不同的场景下会出现不确定的结果。
2025-04-20 16:11:51
705
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人