1到1/50的分数相加

看到一题:1+1/2+1/3+...+1/50,for循环实现;

第一想法,不就是通分嘛,有什么难的,于是开写。

#include "stdafx.h"
#include <iostream>
using namespace std;

//最大公约数
long long maxgy( long long a,long long b){
	long long tmp;
	while (a%b)
	{
		tmp = b;
		b = a%b;
		a = tmp;
	}
	return b;
}
//最小公倍数
long long mingb(long long a, long long b){
	long long tmp = maxgy(a,b);
	tmp = a*b/tmp;
	return tmp;
}
typedef struct  
{
	long long a ;
	char ch;
	long long b;
	void show(){
		cout<<a<<ch<<b<<endl;
	}
}fraction;

fraction add_fraction(fraction f1,fraction f2){
	long long j , k, l;
	fraction f;
	f.ch ='/';
	f.b=mingb(f1.b,f2.b);
	j = f.b/f1.b;
	k = f.b/f2.b;
	f.a = f1.a*j+f2.a*k;
	l = maxgy(f.a,f.b);
	f.a/=l;
	f.b/=l;
	return f;
}
int _tmain(int argc, _TCHAR* argv[])
{
	fraction f1,f2;
	f1.a=1;
	f1.ch='/';
	f1.b=1;
	f2.a=1;
	f2.ch='/';
	f2.b=1;

	for (int i =1;i<50;i++)
	{
		f2.b = i+1;
		f1=add_fraction(f1,f2);
		f1.show();
	}
	
	return 0;
}

注意到我用了long long,具体long long与_int64有啥区别,请参考http://blog.csdn.net/shiwei408/article/details/7463476

其实,我一开始是用int的,就是这个样子了,注意到,正确答案也就没几个了,为啥呢?

肯定是int的范围太小,有操作数越界了,然后我用unsigned int, long ,unsigned long,都不对

于是我祭出了大杀器——long long,说实话之前从没请过这位仁兄出场;

然后运行下


其实会发现,最后几位的结果还是不对啊,这...这...我就不知道,这个时候我重新审视这个过程,你以为你的极限是long,但是32位下,long与int其实都是4个字节,你以为unsigned一下就行了,其实不过是表示正数翻了倍而已,long long你又以为应该行了吧,但是这只是到1/50,如果到1/100呢,到1/1000呢,如果按照这种方法,总会有突破范围的那个数。

盗用一张图,来说下这些基本数据类型的范围。


以下是补充完整的代码: #include <iostream> #include <cmath> using namespace std; class Fraction { public: Fraction(); //缺省构造函数设置分子为0,分母为1 Fraction(int n); //只有1 个参数,设置分子为n,分母为1 Fraction(int n, int d); //设置分子为n,分母为d void setValue(int n, int d); //设置分子和分母 int getNum(); //获取分子值 int getDen(); //获取分母值 double getDoubleValue(); //获取分数对应的小数值 Fraction add(const Fraction & f2); //分数相加 Fraction operator*(const Fraction &f2); //分数相乘 void output(); //按分数形式显示最简分数,按真分数或带分数形式输出,不要有多余的空格 friend ostream &operator<<(ostream &out, Fraction &f);//重载输出,分数形式显示最简分数,按真分数或带分数形式输出,不要有多余的空格 friend istream &operator>>(istream &in, Fraction &f); //输入重载 private: int num; //分子 int den; //分母 void normalize();//规范化 int gcd(); //求最大公约数 }; Fraction::Fraction() { num = 0; den = 1; } Fraction::Fraction(int n) { num = n; den = 1; } Fraction::Fraction(int n, int d) { num = n; den = d; normalize(); } void Fraction::setValue(int n, int d) { num = n; den = d; normalize(); } int Fraction::getNum() { return num; } int Fraction::getDen() { return den; } double Fraction::getDoubleValue() { return (double)num / den; } Fraction Fraction::add(const Fraction & f2) { Fraction result; result.num = num * f2.den + den * f2.num; result.den = den * f2.den; result.normalize(); return result; } Fraction Fraction::operator*(const Fraction &f2) { Fraction result; result.num = num * f2.num; result.den = den * f2.den; result.normalize(); return result; } void Fraction::output() { int integer = num / den; int remainder = abs(num) % den; if (integer != 0) { cout << integer; if (remainder != 0) { cout << " "; } } if (remainder != 0) { cout << remainder << "/" << den; } if (integer == 0 && remainder == 0) { cout << "0"; } } ostream &operator<<(ostream &out, Fraction &f) { f.output(); return out; } istream &operator>>(istream &in, Fraction &f) { char slash; in >> f.num; in >> slash; in >> f.den; f.normalize(); return in; } void Fraction::normalize() { if (den < 0) { num *= -1; den *= -1; } int divisor = gcd(); num /= divisor; den /= divisor; } int Fraction::gcd() { int a = abs(num); int b = abs(den); while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } int main() { Fraction f1(1, 2); Fraction f2(3, 4); Fraction f3 = f1.add(f2); Fraction f4 = f1 * f2; cout << f1 << " + " << f2 << " = " << f3 << endl; cout << f1 << " * " << f2 << " = " << f4 << endl; cout << "Enter a fraction: "; cin >> f1; cout << "The fraction you entered is: " << f1 << endl; return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值