1、传统数据与大数据的对比
2、大数据服务器安装规范
系统硬盘
两块硬盘做一个RAID1
引导分区 200M
交换分区 可以不设置或设置的很小。因为在大数据中需要将其关闭
根分区 /(所有的空间)
数据硬盘
多个硬盘,每个硬盘独立挂载,有多少个硬盘,挂载多少个目录
数据硬盘优先不做RAID,必须做时,做RAID0
做RAID: 优点:数据的读写效率稍高,
缺点:不支持热插拔。一个硬盘损坏,整个服务器需要全部关机再能处理该硬盘。
不做RAID: 优点:支持热插拔。硬盘损坏即把即插。不用关机。
缺点:数据的读写效率稍低。
3、传统数据与大数据处理方式对比
4、大数据技术快的原因
1、分布式存储
2、分布式并行计算
3、移动程序到数据端
4、更前卫、更先进的实现思路
5、更细分的业务场景
6、更先进的硬件技术+更先进的软件技术
5、Hadoop内部组成
HDFS: 海量数据的存储
MapReduce: 海量数据的离线计算
Yarn: 集群资源调度
6、HDFS全称
Hadoop Distribute File System 即 Hadoop分布式文件系统
主要作用:即存储海量数据
为什么能存储海量数据??
因为其空间大,空间大的原因为服务器多、磁盘多。且支持扩展
7、HDFS组成部分
管理者-Master NameNode 集群中有1-2个,用于管理集群中的工作者
工作者-Slave DataNode 集群中有多个 用于存储计算数据
辅助管理 SecondaryNameNode 集群中有0-1 只负责辅助NameNode管理工作
8、HDFS存储数据的方式
以数据块的方式存储数据。默认一个数据块128M,该数值可以修改。
注意:这里的128仅仅是切分数据的阈值。
一个大的数据被切分成多个小的128M的数据块,分别存储在集群多个节点的不同位置。
数据副本机制
数据副本默认是3份。
一个数据存储到HDFS后,数据自动复制两份,共三份(三分相同的数据-数据冗余)