算法提高 质数的后代
在上一季里,曾提到过质数的孤独,其实从另一个角度看,无情隔膜它们的合数全是质数的后代,因为合数可以由质数相乘结合而得。
如果一个合数由两个质数相乘而得,那么我们就叫它是质数们的直接后代。现在,给你一系列自然数,判断它们是否是质数的直接后代。
输入格式:
第一行一个正整数T,表示需要判断的自然数数量
接下来T行,每行一个要判断的自然数
输出格式:
共T行,依次对于输入中给出的自然数,判断是否为质数的直接后代,是则输出Yes,否则输出No
输入样例:
在这里给出一组输入。例如:
4
3
4
6
12
输出样例:
在这里给出相应的输出。例如:
No
Yes
Yes
No
思路:
把这个数分解为两个因子,然后再判断两个数是否为素数,分解和判断都不难。
代码:
#include<iostream>
#include<cmath>
using namespace std;
bool justss(int x)//判断素数
{
for (int i = 2; i <= sqrt(x); i++)
if (x % i == 0)
return false;
return true;
}
bool justhd(int x)//判断质数的后代
{
int j;
for (int i = 2; i <= sqrt(x); i++)
{
if (justss(i) == true)
{
if (x%i == 0)
{
j = x / i;//i,j为这个数的两个因子
if (justss(j) == true)
return true;
}
}
}
return false;
}
int main()
{
int n,x;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> x;
if (justhd(x) == true)
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return 0;
}