【题目描述】
WYF从小就爱乱顶,但是顶是会造成位移的。
他之前水平有限,每次只能顶出k的位移,也就是从一个整点顶到另一个整点上。
我们现在将之简化到数轴上,即从一个整点可以顶到与自己相隔在k之内的数轴上的整点上。
现在WYF的头变多了,于是他能顶到更远的地方,他能顶到任意整点上。
现在他在玩一个游戏,这个游戏里他只能向正方向顶,同时如果他从i顶到j, 他将得到a[j]×(j?i)的分数。
其中a[j]是j点上的分数,且要求j>i,他最后必须停在n上。
【输入格式】
第一行一个整数n。
第二行有n个整数,其中第i个数表示a[i]。
【输出格式】
输出仅一个整数,表示WYF最多能得到的分数。
显然是标准的斜率优化,但因为a[i]不一定,斜率优化不符合单调性
以前被我们扔掉过的东西以后是可能还会有用的,所以我们此时就不能仅仅只用队列,因为如果每次返回去捡起的话,复杂度无法承担<