54 等差数列

这篇博客探讨了如何寻找双平方数集中长度为N的等差数列。作者通过编程实现了一个程序,该程序首先生成指定范围内的双平方数集,然后检查是否存在满足条件的等差数列。输出包括所有找到的等差数列,若未找到则输出`NONE`。示例输入输出展示了程序的运行效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

54 等差数列

作者: xxx 时间限制: 1S 章节: 一维数组

问题描述 :

一个等差数列是一个能表示成a, a+b, a+2b,..., a+nb (n=0,1,2,3,...) 在这个问题中a是一个非负的整数,b是正整数。

写一个程序来找出在双平方数集合S中长度为n的等差数列。双平方数集合是所有能表示成p2+q2的数的集合。

输入说明 :

第一行: N(3<= N<=25),要找的等差数列的长度。 第二行: M(1<= M<=250),搜索双平方数的上界0 <= p,q <= M。

输出说明 :

如果没有找到数列,输出`NONE'。

如果找到了,输出一行或多行, 每行由两个整数组成:a,b 这些行应该先按b排序再按a排序(均为升序)。

将不会有多于10,000个等差数列。

输入范例 :

5 7

输出范例 :

1 4
37 4
2 8
29 8
1 12
5 12
13 12
17 12
5 20
2 24
 

#include<stdio.h>
#include<string.h>

int N,M;
int set[125000];//双平方数集
int sup;//上界
int ans;//符合要求的a和b的对数

void initSet(){
    //获取0<=p,q<=M的双平方数集
	int pos;
	for(int i=0;i<=M;i++){
		for(int j=i;j<=M;j++){
			pos=i*i+j*j;
			set[pos]=1;//标记该下标为双平方数
		}
	}
	sup=M*M+M*M;
}

bool isOk(int n){
    //验证整数n是否为确定范围之内的双平方数
	if(set[n]==1)return true;
	return false;
}

void findOut(){
	ans=0;
    int a,b,i;
	for(b=1;b*(N-1)<=sup;b++){
		//b在外层,a在内层
		//使得结果先按b排序再按a排序(均为升序)
		for(a=0;a+b*(N-1)<=sup;a++){
			for(i=0;i<N;i++){
				if(!isOk(a+b*i))break;
			}
			if(i==N){
				printf("%d %d\n",a,b);
				ans++;
			}
		}
	}
}

int main(){

    memset(set,0,sizeof(set));//初始化set数组
	scanf("%d%d",&N,&M);
	initSet();
    findOut();
	if(ans==0)printf("NONE\n");
	return 0;

}

### 回答1: 以下是使用Python创建等差数列和等比数列的代码和注释: # 创建等差数列 import numpy as np # 导入NumPy库 a = np.linspace(0, 1, 21) # 在[0, 1]范围内创建长度为21等差数列 print(a) """ 注释: np.linspace(start, stop, num)函数用于在指定范围内创建等差数列,其中start是起始数值, stop是结束数值,num是数值个数(包括起始和结束数值),默认为50。该函数返回一个数组, 该数组具有numpy.ndarray类型,常用于科学计算、数据分析、数据可视化等领域。 """ # 创建等比数列 b = np.geomspace(1, 64, 7) # 在[1, 64]范围内创建长度为7的等比数列 print(b) """ 注释: np.geomspace(start, stop, num)函数用于在指定范围内创建等比数列,其中start是起始数值, stop是结束数值(必须大于0),num是数值个数(包括起始和结束数值),默认为50。该函数返回一个 数组,该数组具有numpy.ndarray类型,常用于科学计算、数据分析、数据可视化等领域。 """ ### 回答2: 创建等差数列的代码如下: ```python # 导入numpy库,用于进行数学运算 import numpy as np # 创建在[0,1]范围内长度为21等差数列 lst1 = np.linspace(0, 1, 21) # 输出等差数列 print(lst1) ``` 以上代码使用numpy库的linspace函数来创建在[0,1]范围内长度为21等差数列。函数的参数依次为起始值、终止值和数列的长度。输出结果如下: ``` [0. 0.05263158 0.10526316 0.15789474 0.21052632 0.26315789 0.31578947 0.36842105 0.42105263 0.47368421 0.52631579 0.57894737 0.63157895 0.68421053 0.73684211 0.78947368 0.84210526 0.89473684 0.94736842 1. ] ``` 创建等比数列的代码如下: ```python # 创建任意的等比数列 a = 2 # 初始值 r = 3 # 公比 n = 8 # 数列的长度 lst2 = [a * (r ** i) for i in range(n)] # 输出等比数列 print(lst2) ``` 以上代码首先定义初始值a、公比r和数列长度n。然后使用列表推导式和指数运算创建等比数列。输出结果如下: ``` [2, 6, 18, 54, 162, 486, 1458, 4374] ``` 这里的等比数列指的是第n项与第n-1项的比值始终为一个常数r。 ### 回答3: 创建等差数列: ```python # 导入numpy库,用于创建数列 import numpy as np # 创建在[0,1]范围内长度为21等差数列 arithmetic_seq = np.linspace(0, 1, num=21) # 打印等差数列 print(arithmetic_seq) ``` 解释: 1. 首先,我们导入numpy库,因为它提供了一个函数 linspace() 可以用来创建等差数列2. 然后,我们使用 linspace() 函数来创建一个在[0,1]范围内的等差数列。这个函数需要三个参数:起始值为0,终止值为1,长度为21(即有21个元素)。 3. 最后,我们使用 print() 函数打印出等差数列的值。 创建等比数列: ```python # 创建以2为首项,公比为2,长度为10的等比数列 geometric_seq = [2 * (2 ** i) for i in range(10)] # 打印等比数列 print(geometric_seq) ``` 解释: 1. 我们使用列表推导式来创建等比数列。列表推导式是一种简便的方式,可以快速生列表。 2. 列表推导式中的表达式 `2 * (2 ** i)` 表示首项为2,公比为2的等比数列。其中,`2 ** i` 表示2的i次方,即求公比的幂次方。 3. 循环变量 `i` 的范围是从0到9,即循环10次,对应等比数列的长度为10。 4. 最后,我们使用 print() 函数打印出等比数列的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值