NOIP2015 子串 DP

一看到这个题还以为是什么大力字符串。。。
题目大意:给定A,B串,从A串中取出K个子串,并按照原顺序拼接,求拼成B串的方案数。
题解:直接上一个四维 d p [ i ] [ j ] [ t ] [ 0 / 1 ] dp[i][j][t][0/1] dp[i][j][t][0/1]表示A串中的前i个,B串中的前j个,用了t个字串,其中选/不选A串第i个的总方案数。

  • a [ i ] ! = b [ j ] a[i] != b[j] a[i]!=b[j]时,
    • d p [ i ] [ j ] [ t ] [ 0 ] = d p [ i − 1 ] [ j ] [ t ] [ 0 ] + d p [ i − 1 ] [ j ] [ t ] [ 1 ] dp[i][j][t][0] = dp[i - 1][j][t][0] + dp[i - 1][j][t][1] dp[i][j][t][0]=dp[i1][j][t][0]+dp[i1][j][t][1] d p [ i ] [ j ] [ t ] [ 1 ] = 0 dp[i][j][t][1] = 0 dp[i][j][t][1]=0
  • a [ i ] = = b [ j ] a[i] == b[j] a[i]==b[j]时,
    • d p [ i ] [ j ] [ t ] [ 0 ] = d p [ i − 1 ] [ j ] [ t ] [ 0 ] + d p [ i − 1 ] [ j ] [ t ] [ 1 ] dp[i][j][t][0] = dp[i - 1][j][t][0] + dp[i - 1][j][t][1] dp[i][j][t][0]=dp[i1][j][t][0]+dp[i1][j][t][1]
    • d p [ i ] [ j ] [ t ] [ 1 ] = d p [ i − 1 ] [ j − 1 ] [ t ] [ 1 ] + d p [ i − 1 ] [ j − 1 ] [ t − 1 ] [ 1 ] + d p [ i − 1 ] [ j − 1 ] [ t − 1 ] [ 0 ] dp[i][j][t][1] = dp[i - 1][j - 1][t][1] + dp[i - 1][j - 1][t - 1][1] + dp[i - 1][j - 1][t - 1][0] dp[i][j][t][1]=dp[i1][j1][t][1]+dp[i1][j1][t1][1]+dp[i1][j1][t1][0].

然而这样会MLE,所以开滚动数组优化空间就行了

#include<cstdio>
#include<algorithm>
using namespace std;
const int MOD = 1000000007;

char s1[1001], s2[201];
int dp[2][201][201][2];

int main(){
	int n, m, k; scanf("%d%d%d", &n, &m, &k);
	scanf("%s%s", s1 + 1, s2 + 1);
	dp[0][0][0][0] = 1;
	int tmp = 0;
	for(register int i = 1; i <= n; ++i){
		tmp ^= 1; dp[tmp][0][0][0] = 1;
		for(register int j = 1; j <= min(i, m); ++j){
			for(register int t = 1; t <= min(j, k); ++t){
				if(s1[i] == s2[j]){
					dp[tmp][j][t][1] = dp[tmp^1][j - 1][t][1] + dp[tmp^1][j - 1][t - 1][1];
					dp[tmp][j][t][1] -= (dp[tmp][j][t][1] >= MOD) ? MOD : 0; //卡常
					dp[tmp][j][t][1] = dp[tmp][j][t][1] + dp[tmp^1][j - 1][t - 1][0];
					dp[tmp][j][t][1] -= (dp[tmp][j][t][1] >= MOD) ? MOD : 0; //卡常
				}
				else dp[tmp][j][t][1] = 0;
				dp[tmp][j][t][0] = dp[tmp^1][j][t][0] + dp[tmp^1][j][t][1];
				dp[tmp][j][t][0] -= (dp[tmp][j][t][0] >= MOD) ? MOD : 0; //卡常
			}
		}
	}
	
	printf("%d", (dp[tmp][m][k][0] + dp[tmp][m][k][1]) % MOD);
	return 0;
}
//dp[i][j][t][2]表示a串到了i个,b串到了j个,一共用了t个子串 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值