一看到这个题还以为是什么大力字符串。。。
题目大意:给定A,B串,从A串中取出K个子串,并按照原顺序拼接,求拼成B串的方案数。
题解:直接上一个四维
d
p
[
i
]
[
j
]
[
t
]
[
0
/
1
]
dp[i][j][t][0/1]
dp[i][j][t][0/1]表示A串中的前i个,B串中的前j个,用了t个字串,其中选/不选A串第i个的总方案数。
- 当
a
[
i
]
!
=
b
[
j
]
a[i] != b[j]
a[i]!=b[j]时,
- d p [ i ] [ j ] [ t ] [ 0 ] = d p [ i − 1 ] [ j ] [ t ] [ 0 ] + d p [ i − 1 ] [ j ] [ t ] [ 1 ] dp[i][j][t][0] = dp[i - 1][j][t][0] + dp[i - 1][j][t][1] dp[i][j][t][0]=dp[i−1][j][t][0]+dp[i−1][j][t][1], d p [ i ] [ j ] [ t ] [ 1 ] = 0 dp[i][j][t][1] = 0 dp[i][j][t][1]=0;
- 当
a
[
i
]
=
=
b
[
j
]
a[i] == b[j]
a[i]==b[j]时,
- d p [ i ] [ j ] [ t ] [ 0 ] = d p [ i − 1 ] [ j ] [ t ] [ 0 ] + d p [ i − 1 ] [ j ] [ t ] [ 1 ] dp[i][j][t][0] = dp[i - 1][j][t][0] + dp[i - 1][j][t][1] dp[i][j][t][0]=dp[i−1][j][t][0]+dp[i−1][j][t][1],
- d p [ i ] [ j ] [ t ] [ 1 ] = d p [ i − 1 ] [ j − 1 ] [ t ] [ 1 ] + d p [ i − 1 ] [ j − 1 ] [ t − 1 ] [ 1 ] + d p [ i − 1 ] [ j − 1 ] [ t − 1 ] [ 0 ] dp[i][j][t][1] = dp[i - 1][j - 1][t][1] + dp[i - 1][j - 1][t - 1][1] + dp[i - 1][j - 1][t - 1][0] dp[i][j][t][1]=dp[i−1][j−1][t][1]+dp[i−1][j−1][t−1][1]+dp[i−1][j−1][t−1][0].
然而这样会MLE,所以开滚动数组优化空间就行了
#include<cstdio>
#include<algorithm>
using namespace std;
const int MOD = 1000000007;
char s1[1001], s2[201];
int dp[2][201][201][2];
int main(){
int n, m, k; scanf("%d%d%d", &n, &m, &k);
scanf("%s%s", s1 + 1, s2 + 1);
dp[0][0][0][0] = 1;
int tmp = 0;
for(register int i = 1; i <= n; ++i){
tmp ^= 1; dp[tmp][0][0][0] = 1;
for(register int j = 1; j <= min(i, m); ++j){
for(register int t = 1; t <= min(j, k); ++t){
if(s1[i] == s2[j]){
dp[tmp][j][t][1] = dp[tmp^1][j - 1][t][1] + dp[tmp^1][j - 1][t - 1][1];
dp[tmp][j][t][1] -= (dp[tmp][j][t][1] >= MOD) ? MOD : 0; //卡常
dp[tmp][j][t][1] = dp[tmp][j][t][1] + dp[tmp^1][j - 1][t - 1][0];
dp[tmp][j][t][1] -= (dp[tmp][j][t][1] >= MOD) ? MOD : 0; //卡常
}
else dp[tmp][j][t][1] = 0;
dp[tmp][j][t][0] = dp[tmp^1][j][t][0] + dp[tmp^1][j][t][1];
dp[tmp][j][t][0] -= (dp[tmp][j][t][0] >= MOD) ? MOD : 0; //卡常
}
}
}
printf("%d", (dp[tmp][m][k][0] + dp[tmp][m][k][1]) % MOD);
return 0;
}
//dp[i][j][t][2]表示a串到了i个,b串到了j个,一共用了t个子串