题目描述
有两个仅包含小写英文字母的字符串 AA 和 BB。
现在要从字符串 AA 中取出 kk 个互不重叠的非空子串,然后把这 kk 个子串按照其在字符串 AA 中出现的顺序依次连接起来得到一个新的字符串。请问有多少种方案可以使得这个新串与字符串 BB 相等?
注意:子串取出的位置不同也认为是不同的方案。
输入格式
第一行是三个正整数 n,m,kn,m,k,分别表示字符串 AA 的长度,字符串 BB 的长度,以及问题描述中所提到的 kk,每两个整数之间用一个空格隔开。
第二行包含一个长度为 nn 的字符串,表示字符串 AA。
第三行包含一个长度为 mm 的字符串,表示字符串 BB。
输出格式
一个整数,表示所求方案数。
由于答案可能很大,所以这里要求输出答案对 10000000071000000007 取模的结果。
输入输出样例
输入 #1复制
6 3 1 aabaab aab
输出 #1复制
2
输入 #2复制
6 3 2 aabaab aab
输出 #2复制
7
输入 #3复制
6 3 3 aabaab aab
输出 #3复制
7
说明/提示
对于第 1 组数据:1≤n≤500,1≤m≤50,k=11≤n≤500,1≤m≤50,k=1;
对于第 2 组至第 3 组数据:1≤n≤500,1≤m≤50,k=21≤n≤500,1≤m≤50,k=2;
对于第 4 组至第 5 组数据:1≤n≤500,1≤m≤50,k=m1≤n≤500,1≤m≤50,k=m;
对于第 1 组至第 7 组数据:1≤n≤500,1≤m≤50,1≤k≤m1≤n≤500,1≤m≤50,1≤k≤m;
对于第 1 组至第 9 组数据:1≤n≤1000,1≤m≤100,1≤k≤m1≤n≤1000,1≤m≤100,1≤k≤m;
对于所有 10 组数据:1≤n≤1000,1≤m≤200,1≤k≤m1≤n≤1000,1≤m≤200,1≤k≤m。
思路:
刚开始想到的状态是
dp[i][j][k]:a字符串的前i个匹配b字符串的前j个用k个子串。
但是,这样还不够,因为第i个字符的使用情况会影响第i-1个字符的使用情况。
为什么呢?见下面的情况分析。
所以我们还需要一维来表示使用与否。 使用过用1,没用过用0,即 dp[i][j][k][0/1].
当a[i]==b[j],那么第i个字符可以使用也可以不使用。
使用:dp[i][j][k][1]=dp[i-1][j-1][k][1]+dp[i-1][j-1][k-1][0]+dp[i-1][j-1][k-1][1];
dp[i-1][j-1][k][1]:使用第i个字符并且跟前面的第i-1个字符连接成为第k个子串,所以第i-1个字符必须使用。(即跟第i个字符有关)
dp[i-1][j-1][k-1][0]、dp[i-1][j-1][k-1][1] :当第i个字符单独成新的子串,那么第i-1个字符可用可不用(即跟第i个字符无关)
不使用:
dp[i][j][k][0]=dp[i-1][j][k][1]+dp[i-1][j][k][0] (即跟第i个字符无关)
当a[i]!=b[j]时,
不使用:
dp[i][j][k][0]=dp[i-1][j][k][1]+dp[i-1][j][k][0] (即跟第i个字符无关)
使用: dp[i][j][k][1]=0;
综上所述,有
if(a[i]==b[j]){
dp[i][j][k][1]=dp[i-1][j-1][k][1]+dp[i-1][j-1][k-1][0]+dp[i-1][j-1][k-1][1];
}
else dp[i][j][k][1]=0;
dp[i][j][k][0]=dp[i-1][j][k][1]+dp[i-1][j][k][0] ;
关键代码就好啦~
边界值 dp[0][0][0][0]=1 dp[1][0][0][0][0]=1
假如开四维数组,根据数据范围有1000*200*200*2,很有可能卡空间。
通过转移方程发现,每次i行都是通过i-1行更新得到的,所以我们只要开两行的空间,来回使用,即滚动数组就好了。
#include<bits/stdc++.h>
using namespace std;
char a[1005],b[205];
int dp[2][205][205][2];
const int mod=1000000007;
int main(){
int n,m,k;
scanf("%d%d%d%s%s",&n,&m,&k,a+1,b+1);
dp[0][0][0][0]=1;
dp[1][0][0][0]=1;
for(int i=1; i<=n; i++){
for(int j=1; j<=m; j++){
for(int g=1; g<=k; g++){
if(a[i]==b[j]){
dp[i%2][j][g][1]=((dp[(i-1)%2][j-1][g-1][0]+dp[(i-1)%2][j-1][g-1][1])%mod+dp[(i-1)%2][j-1][g][1])%mod;
}
else{
dp[i%2][j][g][1]=0;
}
dp[i%2][j][g][0]=(dp[(i-1)%2][j][g][0]+dp[(i-1)%2][j][g][1])%mod;//不使用第i个
}
}
}
cout<<(dp[n%2][m][k][0]+dp[n%2][m][k][1])%mod<<endl;
return 0;
}