NOIP2014 解方程 数论+模拟

题目大意:求一个多项式方程在 [ 1 , m ] [1, m] [1,m]的整数解。
题解:没想到吧,这题竟然是暴力(溜
好吧也没有那么简单
要用到一个算法:秦九韶算法,就是减少多项式的计算次数
然后暴力枚举 [ 1 , m ] [1, m] [1,m]就行了 ?
不行,由于系数太大,我们还要取模。将原数分别模多个质数,如果答案都为0是就可以近似认为是答案了。这样的话在洛谷上可以AC,不过在BZOJ上会TLE。为什么?因为洛谷数据水+评测机快,导致很多人没有进一步去想。
真·满分做法:注意到在模p意义下若 f ( x ) = 0 f(x) = 0 f(x)=0,则 f ( x + k ∗ p ) = 0 f(x + k * p) = 0 f(x+kp)=0,所以只用枚举到质数范围就行了。

#include<cstdio>
#include<cstring>
const int MOD[3] = {20029,22277,23333};
const int MaxMod = 3;

int n, m;
char ch[20001];
long long a[5][105];
int Mod[5][40001];
int ans[1000001];
inline void read(int i){
	int f = 1; char ch = getchar();
	while(ch < '0' || ch > '9'){if(ch == '-') f = -1; ch = getchar();}
	while(ch >= '0' && ch <= '9'){
		for(int t = 0; t < MaxMod; t++)
			a[t][i] = (a[t][i] * 10 + ch - '0') % MOD[t];
		ch = getchar();
	}
	if(f == -1) for(int t = 0; t < MaxMod; t++)
		a[t][i] = MOD[t] - a[t][i];
}

inline bool pd(int x, int t){
	long long sum = a[t][n];
	for(int i = n - 1; i >= 0; i--)
		sum = (sum * x + a[t][i]) % MOD[t];
	return sum == 0;
}

inline bool check(int x){
	for(int t = 0; t < MaxMod; t++)
		if(!Mod[t][x % MOD[t]]) return false;
	return true;
}

int main(){
	scanf("%d%d", &n, &m);
	for(int i = 0; i <= n;i++) read(i);
	for(int t = 0; t < MaxMod; t++)//枚举MOD
		for(int x = 1; x < MOD[t]; x++)//枚举x
			if(pd(x, t)) Mod[t][x] = true;
	for(int x = 1; x <= m; x++)
		if(check(x)) ans[++ans[0]] = x;
	printf("%d\n", ans[0]);
	for(int i = 1; i <= ans[0]; i++)
		printf("%d\n", ans[i]);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值