这是我参与更文挑战的第8天,活动详情查看: 更文挑战
空间复杂度全称是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。
1.什么是复杂度
java void fuction(n){ int i = 0; int[] a = new int[n]; for(i;i<n;i++){ a[i] = i*i; } //use a[i] to do someting }
例如上面的代码,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
我们常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。
2.定义复杂度
复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n2 )。等你学完整个专栏之后,你就会发现几乎所有的数据结构和算法的复杂度都跑不出这几个。
3.其它一些概念
- 最好情况时间复杂度(best case time complexity)
- 最坏情况时间复杂度(worst case time complexity)
- 平均情况时间复杂度(average case time complexity)
- 均摊时间复杂度(amortized time complexity)
4.总结
算法的空间复杂度通过分析算法需多少存储空间去实现。如果是放在计算机发展之初,那时候的内存很小,每一K的大小的存储空间都至关重要,但是随着硬件发展,我们现在可以完全不考虑算法所占的内存,通常都是用空间换取时间。而且算法的空间复杂度比较难算,在实际项目中,更倾向于用空间资源换取时间的资源。