术 | 数据结构与算法空间复杂度

这是我参与更文挑战的第8天,活动详情查看: 更文挑战

空间复杂度全称是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。

1.什么是复杂度

java void fuction(n){ int i = 0; int[] a = new int[n]; for(i;i<n;i++){ a[i] = i*i; } //use a[i] to do someting }

例如上面的代码,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。

我们常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。

2.定义复杂度

复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n2 )。等你学完整个专栏之后,你就会发现几乎所有的数据结构和算法的复杂度都跑不出这几个。

497a3f120b7debee07dc0d03984faf04.jpg

3.其它一些概念

  1. 最好情况时间复杂度(best case time complexity)
  2. 最坏情况时间复杂度(worst case time complexity)
  3. 平均情况时间复杂度(average case time complexity)
  4. 均摊时间复杂度(amortized time complexity)

4.总结

算法的空间复杂度通过分析算法需多少存储空间去实现。如果是放在计算机发展之初,那时候的内存很小,每一K的大小的存储空间都至关重要,但是随着硬件发展,我们现在可以完全不考虑算法所占的内存,通常都是用空间换取时间。而且算法的空间复杂度比较难算,在实际项目中,更倾向于用空间资源换取时间的资源。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值