机器学习(六)采样方法
6.1 蒙特卡洛数值积分
计算 f(x) f ( x ) 的积分时, ∫baf(x)dx ∫ a b f ( x ) d x 复杂不好求,可采用蒙特卡洛积分来近似
思想:
∫baf(x)dx=∫baf(x)q(x)q(x)dx ∫ a b f ( x ) d x = ∫ a b f ( x ) q ( x ) q ( x ) d x ,把 q(x) q ( x ) 作为概率分布, f(x)q(x) f ( x ) q ( x ) 作为函数
在 q(x) q ( x ) 下抽取n个样本,当n足够大时,可以均值 1n∑if(xi)q(xi) 1 n ∑ i f ( x i ) q ( x i ) 来近似积分
证明:
E(g(X))=∑xg(x)f(x) E ( g ( X ) ) = ∑ x g ( x ) f ( x ) ,已知X的概率分布为 f(x) f ( x ) , g(x) g ( x ) 的概率分布未知,计算 g(x) g ( x ) 的期望
令: