深度学习(一) 损失函数、输出单元、激活函数、反向传播
深度前馈网络
概述
- 线性模型无论是凸优化还是闭式解都可以高效可靠地拟合,而它的缺陷是拟合能力局限于线性函数里,无法理解特征之间的相互作用。
- 深度学习通过学习特征来优化模型,提高模型的性能。
- 与线性模型的凸优化从任意初始解都能收敛到最优点不同的是,深度学习的代价函数往往是非凸的,使用梯度来进行模型的优化。这种非凸迭代优化对模型的初值敏感,使用不同的初始值会收敛到不同的点。
损失函数
神经网络使用最大似然来进行训练:
J(θ)=−Ex,y∼p^datalogpmodel(y|x)(1) (1) J ( θ ) = − E x , y ∼ p ^ d a t a l o g p m o d e l ( y | x )
损失函数必须足够的大、足够的足有代表性,饱和函数的梯度非常的小,不适合作为损失函数
常用损失函数:交叉熵、l2- 输出单元
- 线性单元
y^=WTh+b(2) (2) y ^ = W T h + b
不易饱和,适合各种优化算法 - sigmoid 二分类
y^=σ(wTh+b)(3) (3) y ^ = σ ( w T h + b ) - softmax 多分类
z=WTh+b(4) (4) z = W T h + b
softmax(z)i=ezi∑kezk(5) (5) s o f t m a x ( z ) i = e z i ∑ k e z k
- 线性单元
隐藏单元
- sigmoid/tanh
g(z)=σ(z)(6) (6) g ( z ) = σ ( z )
g(z)=tanh(z)=2σ(2z)−1(7) (7) g ( z ) = t a n h ( z ) = 2 σ ( 2 z ) − 1
σ(x)=ex1+ex=11+e−x(8) (8) σ ( x ) = e x 1 + e x = 1 1 + e − x
σ(x)′=σ(x)(1−σ(x))(9) (9) σ ( x ) ′ = σ ( x ) ( 1 − σ ( x ) )
1−σ(x)=σ(−x)(10) (10) 1 − σ ( x ) = σ ( − x )
缺点:
a. sigmoid系函数两端扁平,十分易于饱和,simoid求导之梯度值在[0,1/4],易于产生梯度消失。
b. sigmoid函数的输出不是0均值的,这会导致下一层二等输入信号为非0均值,如果输入神经元是数据是正的,那么计算的梯度全为正数或负数,导致梯度下降锯齿形(之字形)晃动,导致收敛速度缓慢。若梯度是批数据累加的则权值的更新准确一些。
c. tanh函数的输出是0均值的,在实际应用中比sigmoid好
d. 非0均值会导致下一层的bias shift。bias shift是指输出的均值比输入的均值大的多。 - ReLU
g(z)=max(0,z)(11) (11) g ( z ) = m a x ( 0 , z )
ReLU单侧抑制,左侧不能学习(Dying ReLU再也没有机会学习),它的优化与线性函数类似。
什么叫Dying ReLU?
假设ReL的输入为 zn=∑ki=0wiani z n = ∑ i = 0 k w i a i n ,经过ReLU后, ReLU=max(0,zn) R e L U = m a x ( 0 , z n ) ,假设一个简单的误差函数 error=ReLU−y e r r o r = R e L U − y ,反向传播传回的梯度:
∂error∂zn=ζn={ 1,0,zn≥0zn<0(12) (12) ∂ e r r o r ∂ z n = ζ n = { 1 , z n ≥ 0 0 , z n < 0
权值更新:
∂error∂wj=∂error∂zn∗∂
- sigmoid/tanh