使用pycharm配置深度学习环境

下载好anaconda和pychram,可以直接在pycharm终端配置深度学习环境的配置。

一、查看可支持cuda版本

 使用nvidia-smi命令在cmd窗口,查看显卡最高支持的cuda版本,如下:

表示安装的cuda版本不能超过11.2,具体版本视自己电脑而定。

二、配置环境

在安装torch时候,需要注意的是版本之间的对应,需要版本一致,其官网的对应关系如下链接。

PyTorch中torch、torchvision、torchaudio版本对应关系_torch与torchvision版本_Liekkas Kono的博客-CSDN博客

1.创建虚拟环境

创建虚拟环境,我创建的是python3.8版本的,版本不宜过高。

打开pycharm的terminal输入以下命令:

conda create -n pytorch python=3.8 

2.激活虚拟环境

conda activate pytorch 

文件路径前出现pytorch字样说明虚拟环境激活成功。

2.安装torch

由于我创建虚拟环境是python3.8,因此我选用10.2的版本的cuda进行下载,在下载时候一定采用pip下载,不要用conda,否则下载的是cpu版,会造成torch.cuda.is_available() 的输出无论如何都是False,其中+cu102表示cuda版本为10.2,一定要带上。

输入命令:

pip install torch==1.10.0+cu102 torchvision==0.11.1+cu102 torchaudio==0.10.0 --extra-index-url https://download.pytorch.org/whl/cu102

整个过程下载很快,并且不会出现中断。

3.检验是否安装成功

import torch
import torchvision

print(torchvision.__version__)
print(torch.__version__)
print(torch.cuda.is_available())

输出如下:

输出True,安装成功。

要在PyCharm配置深度学习环境需要以下步骤: 1. 安装Docker:首先需要安装Docker,Docker是一个容器化平台,可以用来管理和运行各种应用。可以在Docker官方网站上下载并安装适用于您操作系统的版本。 2. 下载Docker镜像:接下来,需要下载一个包含深度学习环境的Docker镜像。可以在Docker Hub上找到多个深度学习环境的镜像,如TensorFlow、PyTorch等。可以根据自己的需求选择适当的镜像,然后使用命令行或Docker客户端下载该镜像。 3. 创建Docker容器:下载完成后,需要使用Docker镜像创建一个Docker容器。可以通过运行以下命令创建一个新的容器: ``` docker run -it --name=my_container -v /path/to/host/folder:/path/to/container/folder -p 8888:8888 image_name ``` 这个命令会创建一个名为my_container的容器,并将主机的一个文件夹挂载到容器内部的一个文件夹中,以便在容器中访问主机上的文件。同时,将容器内的端口8888映射到主机的端口8888上。 4. 在PyCharm配置Docker:打开PyCharm,转到"File" -> "Settings" -> "Project: your_project" -> "Project Interpreter"。点击右上角的齿轮图标,在弹出的对话框中选择"Add" -> "Docker"。然后选择你之前创建的Docker容器。 5. 配置Python解释器:回到"Project Interpreter"页面,点击右下角的加号按钮,在弹出的对话框中选择"System Interpreter" -> "Docker"。然后从下拉菜单中选择你之前创建的Docker容器。 6. 安装Python包:现在你可以在PyCharm项目中使用深度学习库了。使用PyCharm的包管理器来安装所需的Python包,如tensorflow、pytorch等。只需在"Project Interpreter"页面中点击加号按钮,然后搜索并选择需要的包即可。 通过以上步骤,你就成功地在PyCharm配置深度学习环境。现在你可以在PyCharm中编写、调试和运行深度学习代码了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值