下载好anaconda和pychram,可以直接在pycharm终端配置深度学习环境的配置。
一、查看可支持cuda版本
使用nvidia-smi命令在cmd窗口,查看显卡最高支持的cuda版本,如下:
表示安装的cuda版本不能超过11.2,具体版本视自己电脑而定。
二、配置环境
在安装torch时候,需要注意的是版本之间的对应,需要版本一致,其官网的对应关系如下链接。
PyTorch中torch、torchvision、torchaudio版本对应关系_torch与torchvision版本_Liekkas Kono的博客-CSDN博客
1.创建虚拟环境
创建虚拟环境,我创建的是python3.8版本的,版本不宜过高。
打开pycharm的terminal输入以下命令:
conda create -n pytorch python=3.8
2.激活虚拟环境
conda activate pytorch
文件路径前出现pytorch字样说明虚拟环境激活成功。
2.安装torch
由于我创建虚拟环境是python3.8,因此我选用10.2的版本的cuda进行下载,在下载时候一定采用pip下载,不要用conda,否则下载的是cpu版,会造成torch.cuda.is_available() 的输出无论如何都是False,其中+cu102表示cuda版本为10.2,一定要带上。
输入命令:
pip install torch==1.10.0+cu102 torchvision==0.11.1+cu102 torchaudio==0.10.0 --extra-index-url https://download.pytorch.org/whl/cu102
整个过程下载很快,并且不会出现中断。
3.检验是否安装成功
import torch
import torchvision
print(torchvision.__version__)
print(torch.__version__)
print(torch.cuda.is_available())
输出如下:
输出True,安装成功。