环境搭建平台
由于项目要求,前段时间开始接触深度学习,算一个刚入门的小生。在深度学习过程中,由于涉及到大量数据计算处理,对电脑性能有一定要求,所以小伙伴想在深度学习这个方向有所钻研,一定得给自己找一个合适的环境,比如实验室,多去呆呆。当然此次笔记主要是记录在成功安装环境的过程,以备以后不时之需。
平台:windows10,NVIDIA GeForce MX250,
准备安转资料
选择一款自己习惯的编译器,我这因为是用python编程,之前有接触过pycharm,是一款比较好用的python IDE,推荐大家使用,有社区免费版足够基本使用。
1 Pycharm,官网,由于网站特殊性,访问可能有些慢,如果电脑有管家也可在软件安装里搜一搜,注意有付费版本,按需求选择。百度云链接,提取码:9yoa,这个是我备份用的。
2.
安转过程
环境测试
注意事项
参考资料
先记录着下次补充
1.WIN10安装TENSORFLOW(GPU版本)详解(超详细,从零开始)
2.Win10下安装Tensorflow1.13.1(GPU)(小白版)
Anaconda 虚拟环境查看,创建,激活和删除等基本操作
查看现有虚拟环境:
conda env list
创建虚拟环境:
conda create --name env_name
conda create --name env_name python=2.X/3.X
conda create --name env_name numpy scipy(含哪种包)
conda create --name env_name python=3.6 numpy scipy
激活虚拟环境:
activate env_name(Windows)
删除虚拟环境:
conda remove -n env_name --all
退出虚拟环境:
deactivate
列出环境中的包:
conda list
给某个虚拟环境安上需要的包
conda install package_name(包名)