自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

dejahu的博客

愿你一生欢喜,不为世俗所及。

  • 博客(249)
  • 资源 (35)
  • 收藏
  • 关注

原创 Python项目配置前的准备工作

推荐大家使用清华镜像下载的miniconda,实测非常稳定,记得安装的时候所有的对号都要选择上。现在完成之后,直接命令行打开输入conda -V的指令观察是否能正确输出conda的版本号,如果可以,则说明没有问题。另外,为了增加后面镜像下载的速度,推荐大家配置国内的镜像。请执行下面的指令进行镜像的配置。

2024-12-04 11:05:38 10678 7

原创 肆十二大作业系列清单

Hello,各位小伙伴,大家好,由于之前的博客都是断断续续的发布,导致有些小伙伴看到之后不知道去哪里找下一期以及去哪里下载项目中对应的资源,这里我将所有的大作业都整理了处理,每个项目都提供了项目的效果图、博客地址、视频地址以及资源地址,方便大家进行索引。我们设置这个专栏的目的主要是为了帮助大家掌握常用的计算机视觉的算法,以实际操作为导向,学习知识的同时帮助大家完成对应的大作业,本栏目涵盖了计算机视觉中常见的四个任务,即分类、分割、检测和实例分割。关键词:关键词:YOLOv10、PyTorch。

2024-08-09 18:22:29 12700 2

原创 【大作业系列入门教程】如何使用Anaconda和Pycharm

Hi,各位好久不见,这里是肆十二,首先在这里给大伙拜年了。诸位过完年之后估计又要开始为了大作业和毕业设计头疼了,我们重启更新计划,还是围绕计算机视觉里面的分类、检测和分割展开。诸位可以点个关注,防止错过最新动态。资源下载和博客将会更新在我得csdn,视频则会更新我的B站,我之后也会将对应博客和视频的地址放在置顶评论,防止大家迷路。OK,进入正题,今天我们要和大家分享的内容是Python项目中常用的两个工具Anaconda和Pycharm。

2024-02-11 21:26:01 32879 15

原创 【大作业收官-64】基于Efficientnet的石头分类系统

本文介绍了基于EfficientNet的石头分类系统,主要内容包括:1)EfficientNet网络结构解析,通过优化宽度、深度和分辨率三个维度提升模型性能;2)项目实战部分详细说明了数据准备、划分和处理流程,提供了数据集划分脚本的使用方法;3)模型训练过程使用timm库实现,包含环境配置、预训练模型下载和训练参数设置;4)训练结果可视化展示准确率和损失变化曲线。文章为图像分类任务提供了完整的实现方案,从理论到实践全面覆盖EfficientNet的应用。

2025-08-23 19:36:50 459

原创 开源协议有哪些

常见开源协议分为宽松型(如MIT、Apache)和限制型(如GPL)两大类。MIT最宽松,允许商用和闭源;Apache类似但增加专利保护;BSD类似MIT但有不同条款;GPL要求衍生作品必须开源;LGPL适用于库,允许闭源调用;MPL是折中方案;CC协议多用于非代码内容。选择时考虑传播需求、商业用途和开源要求等因素。

2025-08-22 18:56:01 532

原创 普通目录和python目录的区别

这是一个很基础但常被忽略的问题 👍。在 Python 项目里,

2025-08-22 18:55:07 129

原创 【大作业收官-63】基于mobilenet的脑肿瘤图像分类系统

摘要 本文介绍了基于MobileNet的脑肿瘤图像分类系统开发过程。首先概述了MobileNet的三个版本演进:V1引入深度可分离卷积大幅减少参数量;V2采用倒残差结构和线性瓶颈提升精度;V3结合神经网络搜索和注意力机制实现更高效率。随后详细说明了项目实施步骤:包括数据准备(要求图像通道数为3并规范命名)、数据集划分(6:2:2比例)以及使用timm库进行模型训练。特别强调了在国内使用hugging face时需要配置镜像地址,并提供了预训练模型下载注意事项。整个系统开发过程涵盖了从理论到实践的完整环节,为

2025-08-21 21:18:16 748

原创 【大作业收官-62】基于VGG的肺炎图像分类系统

本文介绍了基于VGG网络的肺炎图像分类系统。首先概述了VGG网络结构,它通过重复使用卷积块构建深层网络,相比AlexNet提供了更通用的设计模板。项目实战部分详细说明了数据准备步骤,包括数据集划分和预处理要求。在模型训练环节,使用timm库加载预训练VGG模型,并提供了训练参数设置指南。训练过程会记录准确率和损失曲线,选择最优模型保存。最后通过test.py脚本对训练好的模型进行验证测试,评估分类性能。整个系统实现了从数据准备到模型训练测试的完整流程,为医学图像分类任务提供了实用解决方案。

2025-08-17 13:19:25 1022

原创 大作业系列番外-TIMM库快速开始00

本文介绍了如何使用TIMM库快速部署预训练图像模型。主要内容包括:1)安装TIMM库的两种方法(pip安装和源码安装);2)加载预训练模型(以mobilenetv3_large_100为例);3)查询可用模型列表;4)微调模型(修改分类层);5)特征提取方法;6)图像增强处理(根据模型配置自动生成transform);7)完整推理流程示范(从图片加载到top-5预测结果输出)。文章强调使用模型专属transform的重要性,并提供了获取模型预训练配置的方法。

2025-08-17 03:19:09 619

原创 大作业系列番外-TIMM库的使用01

注:案例中使用的timm版本为1.0.19timm中的所有模型都具有一致的机制,可以从模型中获取不同类型的特征,用于分类之外的任务。

2025-08-16 19:13:43 792

原创 【大作业-61】使用timm训练自己的分类模型-花卉分类

本文介绍了深度学习在计算机视觉领域的四大任务:图像分类、目标检测、语义分割和实例分割。重点讲解了图像分类中使用的两种主流网络结构:卷积神经网络(CNN)和Transformer。CNN通过卷积层、激活函数、池化层等模块高效处理图像特征;Transformer则基于自注意力机制,擅长捕捉长距离依赖关系。文章还提供了项目实践指南,包括Python环境配置、PyTorch安装建议以及数据集准备方法,强调数据需按类别分类存放并建议按6:2:2比例划分训练集、验证集和测试集。最后提供了数据划分脚本的使用说明,为计算机

2025-08-16 17:53:11 104

原创 树莓派、SMT32还是arduino

摘要: Arduino、STM32和树莓派各具特点。Arduino适合入门,资源丰富但性能有限;STM32计算能力强,适合嵌入式系统,但开发门槛较高;树莓派拥有完整Linux系统和强大性能,适合运行AI模型。对于AI应用,树莓派是最佳选择,可支持轻量级到中等规模的模型;STM32仅适合超轻量TinyML;Arduino则几乎无法直接运行AI模型。根据需求选择设备:复杂AI选树莓派,低功耗简单智能选STM32。

2025-08-16 17:30:21 371

原创 YOLO系列代码中文显示

YOLO系列中文标签显示问题解决方案 针对YOLO代码在中文标签和混淆矩阵图中的显示问题,提供以下两个关键调整点: 在ultralytics/utils/plotting.py中添加中文显示支持: import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['simhei'] # 设置中文字体 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 修改ultralytics/uti

2025-07-27 15:54:48 188

原创 【大作业-61】分类篇:使用timm训练自己的分类模型

本文介绍了使用timm库训练花卉分类模型的完整流程。首先概述了图像分类、目标检测和分割任务的差异,重点讲解了CNN和Transformer两种主流网络结构。接着详细说明了数据准备步骤,包括数据清洗、按类别存放图像以及使用脚本自动划分训练/验证/测试集。在模型训练环节,介绍了timm库的特点,并以ResNet50为例演示了训练流程,包括预训练模型下载、参数设置和训练启动。整个过程涵盖了从数据预处理到模型训练的全链路实践,为读者提供了完整的图像分类项目实现方案。

2025-06-13 23:50:13 839

原创 英语写作技巧

练习打字速度,去使用we的模板。

2025-06-12 13:30:12 454

原创 英语阅读技巧(熟悉技巧勤练习)

阅读是统一计时的, 下拉的选择2.5min,排序以及拖拽为2min。阅读的题型主要有5个题型。单选和多选不要浪费时间,只选一个,看自己的心情。每个正确的选择将会获得一分时间控制:2.5min题目的数量为5-6道题。

2025-06-12 11:03:39 828

原创 【大作业-60】基于改进UNET的遥感道路图像分割系统

摘要 本文提出了一种基于改进UNet的遥感道路图像分割系统。该系统采用UNet网络结构,结合跳跃连接和多尺度特征融合机制,实现对高空拍摄道路图像的高精度分割。研究内容包括:1) 数据集准备与预处理;2) UNet模型改进与优化;3) 基于PyTorch的模型实现;4) 使用PyQt5开发的图形化界面系统。实验结果表明,该系统在道路分割任务中表现良好,能够有效辅助城市规划等应用。项目提供了完整的开发环境配置指南和评估指标说明(包括Precision、Recall、mIoU、mPA和Dice系数),便于复现和进

2025-06-05 10:40:21 1266

原创 【大作业-59】基于改进UNET的乳腺癌超声图像分割系统

大家好,这里是肆十二!本次,我们为大家带来的是乳腺超神图像分割。深度学习技术的应用不仅提高了乳腺超神图像分割的精度和效率,也为医学影像分析带来了智能化的转变。借助人工智能,医生可以获得更多维度的辅助信息,从而做出更为精准的临床决策,推动了医学领域,尤其是在乳腺超神疾病的早期筛查、诊断和治疗方面的发展。在这期的教程中,我们将会教会大家如何使用服务器训练我们的乳腺超神图像分割模型以及将我们云端训练好的模型应用到本地的电脑上,最终实现的效果如下。

2025-06-03 11:48:59 1333

原创 【大作业-58】基于改进UNET的遥感图像分割系统

本文介绍了一个基于改进UNET的遥感图像分割系统,该系统采用UNET及其改进模型实现对遥感可见光图像中房屋目标的识别,并集成PyQt开发了图形化界面。系统支持模型切换、图像上传和分割功能,展示了良好的分割效果。文章详细说明了项目配置流程,包括环境搭建、数据集准备、本地配置和模型验证步骤。在评估指标方面,系统采用精确度、召回率、mIoU、mPA和Dice系数等多维度指标进行性能验证,并展示了改进模型的实际分割结果。该研究为遥感图像分割提供了一套完整的解决方案。

2025-06-02 12:41:12 1256

原创 【大作业-57】基于改进UNET的油页岩图像石油含油量识别

🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳视频地址:🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳大家好,这里是肆十二!本次,我们为大家带来的是油页岩图像含油量识别。油页岩中有机质的密度远低于其他岩石基质,因此,在CT图像中有机质的灰度值往往接近于孔隙裂隙的灰度值,从而在图像中表现为灰度值差异不明显,有机质和岩石的边界模糊等问题。 为了精准识别分割出油页岩CT图像中的有机质,对深度学习领域的图像分割方法进行研究,并自主搭建了UNET语义分割网络架构。在

2025-06-01 11:26:00 721

原创 投资之SF战法

拿三个5,一周最多可以出击两次。

2025-06-01 10:25:46 726

原创 【大作业-56】基于YOLO12的声纳图像检测系统

本文介绍了一个基于YOLO12的声纳图像检测系统,适用于极端环境下的目标识别。系统包含标注数据集、训练好的YOLOv5/v8/v11/v12模型及图形化界面,支持检测飞机、鱼类、沉船等目标。文章详细说明了环境配置步骤(需安装PyTorch和Miniconda)、本地模型训练方法(需修改数据集路径)、GPU服务器训练选项(推荐蓝耘GPU平台)以及模型测试流程。系统提供升级后的PySide6图形界面和Gradio开发的Web界面,用户可通过简单操作完成图像/视频检测。文中包含大量示例图片和操作截图,并提供了相关

2025-05-28 23:33:28 1357

原创 【大作业-55】基于深度学习的电动车头盔佩戴检测系统

本文介绍了一个基于YOLO12的电动车头盔佩戴检测系统。该系统可检测电动车驾驶员是否佩戴头盔,包含标注数据集、预训练模型(YOLOv5/8/11/12)和图形化界面。数据集包含"佩戴头盔"、"未佩戴头盔"和"电动车"三类。文章详细讲解了环境配置、本地训练(需修改数据集路径)、模型测试和图形化界面使用(支持图片/视频检测)。还提供了GPU服务器训练方案和Web界面封装代码。系统可实现实时检测,适用于交通管理场景。

2025-05-25 11:08:14 1193

原创 【大作业-54】基于YOLO12的安全绳佩戴检测系统

摘要:本文介绍了一个基于YOLO12的安全绳佩戴检测系统,用于实时监测电力工人高空作业时是否佩戴安全绳。系统包含完整的数据集(仅"安全绳"类别)、训练好的YOLO系列模型和图形化界面。项目提供了详细的环境配置指南、本地/GPU服务器训练方法、模型测试流程,并展示了基于PySide6开发的GUI界面和Gradio实现的Web版检测系统。该系统通过计算机视觉技术解决了传统人工监管的不足,为高空作业安全提供了智能化解决方案。

2025-05-24 12:41:19 1536

原创 环境安装快捷指令-自用

如果客户没有对应的软件,请从下面的地址进行获取。先对镜像进行配置,根据网络条件的不同,可以选择目前知道的清华或者是北外的,其他的暂时不确定。

2025-04-30 11:28:10 528

原创 【大作业-53】基于YOLO的人脸表情识别

yolo12算法在原先yolo11的基础上进行了微调,引入了一种以注意力为中心的架构,它不同于以往YOLO 模型中使用的基于 CNN 的传统方法,但仍保持了许多应用所必需的实时推理速度。该模型通过对注意力机制和整体网络架构进行新颖的方法创新,实现了最先进的物体检测精度,同时保持了实时性能。区域注意机制:一种新的自我注意方法,能有效处理大的感受野。它可将特征图横向或纵向划分为l 个大小相等的区域(默认为 4 个),从而避免复杂的操作,并保持较大的有效感受野。与标准自注意相比,这大大降低了计算成本。

2025-04-10 18:14:14 2725 4

原创 【大作业-52】基于改进UNET的细胞图像分割系统(unet、unet++、r2net、attention unet以及unet的改进)

Precision和Recall主要从不同的角度衡量模型在预测正类时的表现,一个注重减少假阳性(Precision),另一个注重减少假阴性(Recall)。mIoU计算了预测与真实标签之间的重叠程度,越高越好。mPA聚焦于每个类别的像素级准确率,适用于多类别的分割任务。Dice 系数是衡量两个区域相似度的一个综合指标,常用于评估医学图像中的目标分割。这些指标各有侧重,在不同的任务中可能需要选择适合的评估方式。通常,综合考虑多个指标可以更全面地评估分割模型的表现。

2025-04-07 23:20:41 1820

原创 【大作业-49】基于深度学习的农作物成熟度检测系统

yolo12算法在原先yolo11的基础上进行了微调,引入了一种以注意力为中心的架构,它不同于以往YOLO 模型中使用的基于 CNN 的传统方法,但仍保持了许多应用所必需的实时推理速度。该模型通过对注意力机制和整体网络架构进行新颖的方法创新,实现了最先进的物体检测精度,同时保持了实时性能。区域注意机制:一种新的自我注意方法,能有效处理大的感受野。它可将特征图横向或纵向划分为l 个大小相等的区域(默认为 4 个),从而避免复杂的操作,并保持较大的有效感受野。与标准自注意相比,这大大降低了计算成本。

2025-04-03 22:53:01 1693

原创 【大作业-51】基于改进UNET的心脏超声图像分割系统(unet、unet++、r2net、attention unet以及unet的改进)

本次,我们为大家带来的是肺部图像分割。深度学习技术的应用不仅提高了肺部图像分割的精度和效率,也为医学影像分析带来了智能化的转变。借助人工智能,医生可以获得更多维度的辅助信息,从而做出更为精准的临床决策,推动了医学领域,尤其是在肺部疾病的早期筛查、诊断和治疗方面的发展。在这期的教程中,我们将会教会大家如何使用服务器训练我们的肺部图像分割

2025-04-03 18:00:44 1140

原创 【大作业-50】基于YOLO12的人体关键点检测和姿态估计

yolo12算法在原先yolo11的基础上进行了微调,引入了一种以注意力为中心的架构,它不同于以往YOLO 模型中使用的基于 CNN 的传统方法,但仍保持了许多应用所必需的实时推理速度。该模型通过对注意力机制和整体网络架构进行新颖的方法创新,实现了最先进的物体检测精度,同时保持了实时性能。区域注意机制:一种新的自我注意方法,能有效处理大的感受野。它可将特征图横向或纵向划分为l 个大小相等的区域(默认为 4 个),从而避免复杂的操作,并保持较大的有效感受野。与标准自注意相比,这大大降低了计算成本。

2025-03-31 20:45:34 3591 4

原创 【大作业-48】基于深度学习的荔枝病虫害检测

yolo12算法在原先yolo11的基础上进行了微调,引入了一种以注意力为中心的架构,它不同于以往YOLO 模型中使用的基于 CNN 的传统方法,但仍保持了许多应用所必需的实时推理速度。该模型通过对注意力机制和整体网络架构进行新颖的方法创新,实现了最先进的物体检测精度,同时保持了实时性能。区域注意机制:一种新的自我注意方法,能有效处理大的感受野。它可将特征图横向或纵向划分为l 个大小相等的区域(默认为 4 个),从而避免复杂的操作,并保持较大的有效感受野。与标准自注意相比,这大大降低了计算成本。

2025-03-27 15:16:30 948

原创 LLM入门课#05 人类反馈强化学习是啥

其中agent是你的llm模型,环境来自于用户指定的任务,状态则是当前的上下文,动作则是通过token的池子给出一个合理的输出,reward则是用来判断模型当前的输出是否和用户希望的输出是一致的,是有毒的还是无毒的。这对吗,这明显是不对的,机器人应该和谐地融入到我们的社会中才可以。在医学病理图像生成的任务中, 我们也可以通过奖励模型来定义什么模型是一个好的模型,而什么模型是一个不好的模型,通过这个方式,也可以让我们的模型生成一个更好的病理图像报告的内容,实在是太棒了!可以说是强化学习的魅力时刻了。

2025-03-23 19:26:36 288

原创 【大作业-47】基于深度学习的葡萄叶片病虫害检测系统

yolo12算法在原先yolo11的基础上进行了微调,引入了一种以注意力为中心的架构,它不同于以往YOLO 模型中使用的基于 CNN 的传统方法,但仍保持了许多应用所必需的实时推理速度。该模型通过对注意力机制和整体网络架构进行新颖的方法创新,实现了最先进的物体检测精度,同时保持了实时性能。区域注意机制:一种新的自我注意方法,能有效处理大的感受野。它可将特征图横向或纵向划分为l 个大小相等的区域(默认为 4 个),从而避免复杂的操作,并保持较大的有效感受野。与标准自注意相比,这大大降低了计算成本。

2025-03-23 00:33:04 1971

原创 基于YOLO12的无人机(航拍)视角的目标检测系统

yolo12算法在原先yolo11的基础上进行了微调,引入了一种以注意力为中心的架构,它不同于以往YOLO 模型中使用的基于 CNN 的传统方法,但仍保持了许多应用所必需的实时推理速度。该模型通过对注意力机制和整体网络架构进行新颖的方法创新,实现了最先进的物体检测精度,同时保持了实时性能。区域注意机制:一种新的自我注意方法,能有效处理大的感受野。它可将特征图横向或纵向划分为l 个大小相等的区域(默认为 4 个),从而避免复杂的操作,并保持较大的有效感受野。与标准自注意相比,这大大降低了计算成本。

2025-03-23 00:30:55 3377 3

原创 LLM入门课#04-大模型的微调技术

大家经常会听到大模型这个概念,实际上这些通用大模型的训练非常依赖硬件的资源情况,你可能听过某某公司又买了几百张卡用于模型训练,某公司又构建了一个多大的数据中心,这些对于我们普通人来说是非常不容易的。下面有一张图用来展示一个模型构建过程中所占用的资源情况,除了模型本身的参数之外,还有梯度、优化器的状态等其他的需要占用到资源的情况。所以,微调是一个非常关键的技术,通过少量的资源在你的特定任务上进行训练。

2025-03-14 15:33:51 924

原创 LLM入门课#03-指令微调和模型评估

提示词工程可以在不使用额外训练的基础上优化模型,之后可以使用lora、PEFT等模型来完成微调。动机:使用提示词来完成模型的推理将会让你的案例占用大量的提示词的空间,这样对于推理是不优化的,或者对于用户而言是不友好的,但是如果可以直接通过微调的方式从模型端增强模型的性能,将不会占用大量宝贵的提示词的空间。通过指令微调的方式来完成模型的微调,微调的形式是提供一个提示词,然后给定输入和输出的内容,如下所示。如果让模型全部的权重参数来进行训练,需要对耗费很大的资源。

2025-03-13 15:56:06 403 1

原创 LLM入门课#02

我们对大模型的基础知识进行了了解之后,了解到大模型是通过预测下一个词的形式来完成模型的训练的过程。并且根据这些内容衍生出了encoder-only、encoder-decoder以及decoder-only的模型,其中gpt是典型的decoder-only的模型。并且可以得出我们的输入将会影响到我们的输出,所以prompt是重要的,上下文是重要的。

2025-03-10 23:47:24 367

原创 LLM入门课程#01

这个向量大概是可以衡量单词特征的,比如绿茶和红茶的相似度就会高一些,但是对于绿茶和可乐的相似度就会小一些,通过这种词向量的方式可以把他们映射在一个空间中,你会发现相似的单词总是在一起的。对于一个翻译的任务来说,有点像是通过递归的形式来进行生成的。机器学习的模型是一个大型的统计计算器,处理的是数字,不是单词,所以要做的事情是将单词以数字的形式来进行表示,也就是分词。除此之外,为了不丧失单词的顺序,这个时候还会在网络中添加绝对位置编码,绝对位置的编码将会和单词的编码结合在一起,一起作为下面自注意力层的输入。

2025-03-09 22:15:11 462

原创 【大作业-43】基于深度学习的反光背心佩戴检测系统

yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。

2025-03-09 12:41:20 1246 1

原创 【大作业-45】基于深度学习的无人机检测系统

yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。

2025-03-06 15:25:03 1650

【大作业-08】YOLOV5火灾检测数据集+代码+模型 2000张标注好的数据+教学视频

YOLOV5火灾检测数据集+代码+模型 2000张标注好的数据+教学视频

2022-02-19

大作业05-YOLOV5口罩检测数据集+代码+模型 2000张标注好的数据+教学视频.zip

YOLOV5口罩检测数据集+代码+模型 2000张标注好的数据+教学视频 代码的下载地址在:https://gitee.com/song-laogou/yolov5-mask-42 大家可以按照这里的视频教程配置环境:https://www.bilibili.com/video/BV1YL4y1J7xz/ 更多数据请看:https://blog.csdn.net/ECHOSON/article/details/121892887 遇到问题请小伙伴通过私信联系作者,感谢大家的支持!

2021-12-14

花卉识别数据集5类-提供代码和教程.zip

花卉识别数据集5类-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

苹果叶片病虫害分类数据集-提高代码和教程.zip

苹果叶片病虫害分类数据集-提高tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

垃圾分类数据集和tf代码-8w张图片245个类.zip

包含垃圾分类数据集和tf代码-8w张图片245个类,提供2组训练好的模型在models目录下,详情请看https://blog.csdn.net/ECHOSON/article/details/118025415

2021-06-18

皮肤病语义分割数据集+代码+unet模型 2000张标注好的数据+教学视频

兄弟们好呀,这里是肆十二,这转眼间寒假就要过完了,相信大家的毕设也要准备动手了吧,作为一名大作业区的UP主,也该蹭波热度了,之前关于图像分类和目标检测我们都出了相应的教程,所以这期内容我们搞波新的,我们用Unet来做医学图像分割。我们将会以皮肤病的数据作为示范,训练一个皮肤病分割的模型出来,用户输入图像,模型可以自动分割去皮肤病的区域和正常的区域。

2022-02-13

YOLOV5手势识别数据集+代码+模型 2000张标注好的数据+教学视频

1.目标检测格式数据集,标签为yolo的txt格式 2.手势识别数据集,支持[ 'A', 'number 7', 'D', 'I', 'L', 'V', 'W', 'Y', 'I love you', 'number 5' ]10种手势的识别 3. 提供3组训练好的YOLOV5模型 4.代码中包含图形化界面 5.提供B站视频教程:https://www.bilibili.com/video/BV1YL4y1J7xz/

2022-03-05

蔬菜识别数据集-提供代码和教程.zip

蔬菜识别数据集-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

花卉识别数据集98类-提供代码和教程.zip

花卉识别数据集98类-提供tensorflow代码和教程.,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

脑肿瘤切片分类数据集-提供代码和教程.zip

脑肿瘤切片分类数据集-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

人脸识别系统+windows64位-dlib-19.17.0-cp37-cp37m-win_amd64.zip

python编写的人脸识别程序和预编译的dlib库

2022-01-10

果蔬识别数据集.zip

果蔬识别数据集,包含'土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'12种水果蔬菜

2021-06-05

小麦叶片病虫害分类数据集-提高代码和教程.zip

小麦叶片病虫害分类数据集-提高tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

水稻叶片病虫害分类数据集-提供代码和教程.zip

水稻叶片病虫害分类数据集-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

cuda11和cudnn8.1.zip

cuda11和cudnn8.1,用于mmdetection

2021-08-06

云南大学软件学院设计模式实验.zip

云南大学软件学院设计模式,谢老师教授

2021-06-04

西安交通大学杜小智软件测试mooc答案.zip

西安交通大学杜小智软件测试mooc答案,选择题和问答题

2021-06-03

肺炎x光图片分类数据集-提供代码和教程.zip

肺炎x光图片分类数据集-提供tensorflow代码和教程,结合作者录制的b站视频,快速掌握不是梦。数据集详细信息请看https://blog.csdn.net/ECHOSON/article/details/117964438

2021-06-16

云南大学软件学院陈清毅老师物联网实验报告.zip

云南大学软件学院陈清毅老师物联网实验报告.zip

2021-06-04

云南大学软件学院软件工程.zip

云南大学软件学院软件工程实验和大作业

2021-06-04

【大作业-38】基于yolo11和yolov8的输电线路过热检测系统.zip

文件中包含了已经处理好的2000张驾驶行行为数据,类别如下 ‘overheat’ 输电线路过热 以及包含了完整的模型训练和测试的源代码、已经训练好的yolo11和yolov8的模型和基于pyside开发的图形化界面和基于gradio开发的web界面。 ---------------------------- 使用方式:----------------------------------- 下载压缩包之后安装b站up主肆十二-对应的本期资源的配套视频进行配置,配置前需要提前安装好miniconda和pycharm。 视频配置地址位于:https://www.bilibili.com/video/BV1cHFXezEKq

2025-03-01

ollama部署包+deepseek部署指南+deepseek技术文档

包含windows本地部署deepseek所需要使用到的ollama部署包 以及用于示范的本地的知识库文档 和两篇关于deepseek的技术报告

2025-02-19

【大作业-36】基于yolov8和yolo11的绝缘子缺陷检测系统.zip

---------------------------- 文件内容:----------------------------------- 文件中包含了已经处理好的1000张绝缘子图像和标签图像,类别如下 * 'insulator' 绝缘子 * 'damaged' 绝缘子损坏 * 'Flashover' 闪络 * 'hammer' 锤子 以及代码文件中包含了完整的模型训练和测试的源代码、已经训练好的yolo11和yolov8的模型和基于pyside开发的图形化界面和基于gradio开发的web界面。 ---------------------------- 使用方式:----------------------------------- 下载压缩包之后安装b站up主肆十二-对应的本期资源的配套视频进行配置,配置前需要提前安装好miniconda和pycharm。 视频配置地址位于:https://www.bilibili.com/video/BV1cHFXezEKq -------------------------------------

2025-02-19

【大作业-35】基于红外场景的电力设备检测系统.zip(数据集+yolo模型+图形化界面)

文件内容:文件中包含了已经处理好的1000张红外电力设备图像和标签图像,模型训练和测试的源代码、已经训练好的yolo11和yolov8的模型和基于pyside开发的图形化界面和基于gradio开发的web界面。 使用方式:下载压缩包之后安装b站up主肆十二-对应的本期资源的配套视频进行配置,配置前需要提前安装好miniconda和pycharm。

2025-02-06

基于红外场景的输电线路绝缘子检测系统(数据集+模型+图形化界面)

【大作业-34】基于红外场景下的输电线路绝缘子检测系统 文件内容:文件中包含了已经处理好的1000张红外绝缘子图像和标签图像,模型训练和测试的源代码、已经训练好的yolo11和yolov8的模型和基于pyside开发的图形化界面和基于gradio开发的web界面。 使用方式:下载压缩包之后安装b站up主肆十二-对应的本期资源的配套视频进行配置,配置前需要提前安装好miniconda和pycharm。

2025-02-06

labelme资源文件,包含labelme用于ai标注的预训练模型,labelme的json文件向yolo格式和mmseg格式进行转化的文件

labelme资源文件,包含labelme用于ai标注的预训练模型,labelme的json文件向yolo格式和mmseg格式进行转化的文件。

2025-01-31

基于yolo11的肺结节检测系统(luna16)-提供数据集、模型和图形化界面

基于yolo11的肺结节检测系统(luna16) 使用luna16数据集进行处理,解析后的2d图像数量为1186张 提供多组对比实验,包含yolov5、yolov8、yolo11的nano和small4组已训练的模型 提供了一键式的训练、测试、图形化和web界面,方便运行。 为了方便撰写报告,提供了结构图、文档和ppt的模板。 环境配置请参考B站视频,在B站搜索肆十二-:https://www.bilibili.com/video/BV1nzzdYwE2g/

2024-12-12

YOLOV5麦穗计数数据集+代码+模型+教学视频-更新

小麦是世界上种植地域最广、面积最大及产量最多的粮食作物,2021年世界小麦使用量达到7.54亿吨。小麦产量的及时预估对作物生产、粮食价格及粮食安全产生重大影响,单位面积穗数是小麦产量预估研究中的难点及重中之重。当前,人工估产方法依据专家目测估计产量,准确率得不到保证。取样估产方法通过采集部分区域,进行人工计数、称重,费时费力。随着计算机视觉技术的发展,大量研究致力于统计单幅图像中麦穗数进而实现估产,此类研究利用卷积神经网络强大的特征自学习能力,对麦穗进行特征提取,通过大量数据训练模型,进而成功实现对图像中麦穗计数,为后续小麦估产提供数据参考。然而部分现有的麦穗计数研究基于通用的原始计数网络,未考虑小麦尺度不一、密集等特点进行优化,准确率有待提升。 本期我们将深度学习算法YOLOV5和农业进行结合,通过目标检测的方式来统计一片区域中的麦穗数量。 博客地址:https://blog.csdn.net/ECHOSON/article/details/129721592

2024-08-09

【大作业-23】 使用yolov9进行PCB电路板缺陷检测.zip

【大作业-23】用yolov8做PCB电路板缺陷检测 包含标注好的PCB电路板缺陷检测的数据集、用于模型训练和测试的yolov9的代码以及训练好的yolov9的模型和使用pyside6编写的图形化界面。 详细的视频教程可以看这期内容:https://www.bilibili.com/video/BV1KHp2eREFZ/ 有问题请私信。

2024-10-05

【大作业-20】用yolov8做动物检测.zip

yolov8YOLOV8动物检测(代码+动物检测数据集+训练好的模型+图形化系统) YOLO系列目前已经更新到了V10,并且YOLO系列模型已经目前稳定运行了一段时间。经过一段时间的准备,我们选择在暑期的这个时间点更新YOLOV8模型的教程,从原理、数据标注和环境配置一一展开讲解,帮助小伙伴们掌握YOLOv8的基本内容。注意本次的教程除了支持v8模型的训练,还适用v3、v5、v9、v10等一系列模型的训练。 资源中包含的内容有标注好的一份动物检测的数据集(大约5000张图像),可以训练和验证的代码、训练好的yolo系列的模型和一份图形化界面,以及我们的联系方式,如果调试遇到问题可以找我来进行交流,对应的视频放置在这个位置https://www.bilibili.com/video/BV1rxHLeoE8D/

2024-10-03

YOLOV8行人检测(代码+行人检测数据集+训练好的模型+图形化系统).zip

YOLOV8行人检测(代码+行人检测数据集+训练好的模型+图形化系统) YOLO系列目前已经更新到了V10,并且YOLO系列模型已经目前稳定运行了一段时间。经过一段时间的准备,我们选择在暑期的这个时间点更新YOLOV8模型的教程,从原理、数据标注和环境配置一一展开讲解,帮助小伙伴们掌握YOLOv8的基本内容。注意本次的教程除了支持v8模型的训练,还适用v3、v5、v9、v10等一系列模型的训练。 资源中包含的内容有标注好的一份行人检测的数据集(大约5000张图像),可以训练和验证的代码、训练好的yolo系列的模型和一份图形化界面,以及我们的联系方式,如果调试遇到问题可以找我来进行交流,对应的视频放置在这个位置https://space.bilibili.com/161240964

2024-08-19

CVPR2024医学图像相关文章整理

CVPR2024医学图像相关文章整理,包含了医学图像的超分、配准、分割以及生成

2024-08-11

ICASSP2024-Paper-Templates.zip

ICASSP2024_Paper_Templates模板 包含word模板和Latex模板

2024-08-11

28-基于Tensorflow的风格迁移+代码+模型+系统界面+教学视频.zip

随着GPT的横空出世,生成式网络也越来越活,现在的大语言模型除了能回答文字上面的内容,并且在图像和视频创作中也表现除了巨大的潜力,今天我们继续大作业系列,以比较早的一篇李飞飞博士的快速风格迁移为例,给大家展示一下早期是如何利用卷积神经网络来进行图像风格迁移的。具体我们要实现的效果如下,通过tensorflow框架构建快速图像分割迁移的网络并利用训练好的四个模型实现对任意上传图片的风格迁移,并利用PyQt5构建图形化的界面来完成最终的系统。 博客地址:https://blog.csdn.net/ECHOSON/article/details/139205973

2024-08-09

YOLOv10海上红外目标检测+代码+模型+系统界面+教学视频.zip

本资源配套对应的视频教程和图文教程,手把手教你使用YOLOV10做海上船只红外目标检测的训练、测试和界面封装,包含了YOLOV10原理的解析、处理好的训练集和测试集、训练和测试的代码以及训练好的模型,并封装为了图形化界面,只需点击上传按钮上传图像即可完成海上红外图像的预测。 在这里,我们用一个红外海洋目标检测的数据集,里面包含了7类海洋目标 `['liner', 'sailboat', 'warship', 'canoe', 'bulk carrier', 'container ship', 'fishing boat']` YOLOv10模型于24年5月份正式提出,对过去YOLOs的结构设计、优化目标和数据增强策略进行了深入的了解和探索,并对YOLO模型中的各个组件进行了rethink,从后处理和模型结构入手进行了新的设计,在速度和精度上进行提升。 博客地址为:https://blog.csdn.net/ECHOSON/article/details/139223999

2024-08-07

YOLOV5交通标志识别检测数据集+代码+模型+教学视频

通过拍照标注的形式标注数据 交通标志的目标检测算法在计算机视觉领域一直属于热点研究问题,改进的优化算法不断地被提出。 目前的标注数据只有三大类:指示标志、禁止标志、警告标志。

2023-03-18

Unet++舌象图像分割数据集+代码+模型+系统界面+教学视频.zip

舌象分割在中医舌诊中具有重要的意义。舌诊是中医通过观察舌象了解人体生理功能和病理变化的一种诊断方法。舌象分割是将舌面划分为不同的区域,每个区域对应着不同的脏腑和病理变化。 UNet++,它是一种深度监督的编码器-解码器网络,通过一系列嵌套的密集跳跃连接将编码器和解码器子网连接起来。UNet++的设计目标是减少编码器和解码器子网特征图之间的语义差距,使得优化器在面对语义相似的特征图时,学习任务变得更加简单。 该文件中包含提前处理好的舌象数据集和标签,以及训练好的unet++模型和完整的训练、测试和图形化界面的Python代码,并且提供了实际的操作视频,按照视频只需要进行一下基本的环境创建,即可运行出一个完整的分割系统。

2024-03-10

Unet眼底血管图像分割数据集+代码+模型+系统界面+教学视频.zip

本资源配套对应的视频教程和图文教程,手把手教你使用Unet做眼底图像分割的训练、测试和界面封装,包含了Unet原理的解析、处理好的训练集和测试集、训练和测试的代码以及训练好的模型,并封装为了图形化界面,只需点击上传按钮上传图像即可完成眼底图像的预测。 随着生活水平的提高,眼科疾病以及心脑血管疾病的发病率呈现逐年增长的趋势。视网膜血管是这类疾病诊断和监测的重要信息来源,其形态和状况的变化可以反映出许多疾病的早期病理变化。然而,由于受眼底图像采集技术的限制以及视网膜血管自身结构的复杂性和多变性,使得视网膜血管的分割变得非常困难。传统方法依靠人工手动分割视网膜血管,不仅工作量巨大,极为耗时,而且受主观因素影响严重。通过眼底血管图像分割可以提高诊断准确性、效率以及推动科学研究和改进治疗方法等方面。 B站主页:https://space.bilibili.com/161240964 C站主页:https://blog.csdn.net/ECHOSON

2024-02-17

YOLOV5电线绝缘子缺陷检测数据集+代码+模型+视频讲解

绝缘子作为输电环节中的重要设备,在支撑固定导线,保障绝缘距离的方面有着重要作用。深度学习技术的大量应用,计算机运算性能的不断提高,为无人机准确识别和定位绝缘子,实时跟踪拍摄开辟了新的解决途径。本文对输电线路中绝缘子进行识别及定位,利用深度学习技术采取基于YOLOv5 算法的目标检测手段,结合绝缘子数据集的特点,对无人机拍摄图片进行训练,实现对绝缘子精准识别和定位,大幅提升无人机巡检时对绝缘子设备准确跟踪、判定的效率,具有十分重要的应用效果。本项目可以作为计算机专业毕业涉及,提供处理好的数据集、视频和三组训练好的模型,部署简单,并且具有可用于图片检测和视频检测的图形化界面,方便易用。

2023-03-15

YOLOV5动物检测数据集+代码+模型 2000张标注好的数据+教学视频

1.目标检测格式数据集,标签为yolo的txt格式 2.动物检测数据集,支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 3. 提供3组训练好的YOLOV5模型 4.代码中包含图形化界面

2022-03-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除