这道题目和俄罗斯套娃差不多,我们将l <= l' && w <= w'的情况称为第一个套娃可以嵌套在第二个套娃中。
则最后的答案其实就是互相不能相互嵌套的套娃的最大数量
那么怎么找这个数目呢?我们可以先按照 l 降序对套娃排序,然后在所有套娃的w中找出最长上升子序列。LIS的长度就是答案。
具体的原理也很简单,最长上升子序列中的两个套娃满足 l1 >= l2 && w1 < w2 。这两个娃娃肯定是不能相互嵌套的。
不过要注意一点,排序的时候按照 l 降序排列,如果 l 相等,就按照 w 降序排列
参考这组数据: (3, 1), (3, 2)
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX_N 5005
using namespace std;
typedef long long int ll;
struct Wood
{
int l, w;
bool operator < (const Wood& b) const
{
return l > b.l || (l == b.l && w > b.w);///非常重要!!!如果第一关键字相同,按照第二关键字的升序排列
}
};
Wood wood[MAX_N];
int main()
{
//freopen("1.txt", "r", stdin);
int T;
cin >> T;
while (T--)
{
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++)
scanf("%d%d", &wood[i].l, &wood[i].w);
sort(wood, wood + n);
///LIS的O(nlogn)算法
int len[MAX_N], k = 0;
for (int i = 0; i < n; i++)
{
int Index = lower_bound(len, len + k, wood[i].w) - len;
if (Index == k)
len[k++] = wood[i].w;
else
len[Index] = wood[i].w;
}
printf("%d\n", k);
}
return 0;
}