HDU 6704 后缀数组

首先应该注意二分找前缀相同的区间时不能直接通过比较字符串,因为字符串比较不是o(1),而是o(n),md坑死了,还有这个二分真难写。
后缀数组+RMQ+主席树,不难但是真的麻烦。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
const int MAX_N=1e5+1000;
int num=0;
struct skt{
    int l,r,sum;
}f[MAX_N*40];
int root[MAX_N];
void build(int k,int l,int r){
  if(l==r){
   f[k].sum=0;
   if(k>num)
   num=k;
   return;
  }
  else{
   int mid=(l+r)>>1;
   f[k].l=k<<1,f[k].r=k<<1|1;
   build(k<<1,l,mid);
   build(k<<1|1,mid+1,r);
  }
}
void add(int k,int k1,int l,int r,int x){
  if(l==r){
    f[k1].sum=1;
    return;
 }
  else{
    int mid=(l+r)>>1;
    if(x<=mid){
      f[k1].l=++num;
      f[k1].r=f[k].r;
      add(f[k].l,f[k1].l,l,mid,x);
    }
    else{
      f[k1].l=f[k].l;
      f[k1].r=++num;
      add(f[k].r,f[k1].r,mid+1,r,x);
    }
    f[k1].sum=f[f[k1].l].sum+f[f[k1].r].sum;
  }
}
int find(int k,int k1,int l,int r,int x){
  if(l==r)
  return l;
  else{
    int mid=(l+r)>>1;
    int sl=f[f[k1].l].sum-f[f[k].l].sum;
    int sr=f[f[k1].r].sum-f[f[k].r].sum;
    if(sl>=x){
      return find(f[k].l,f[k1].l,l,mid,x);
    }
    else{
      return find(f[k].r,f[k1].r,mid+1,r,x-sl);
  }
  }
}
char s[MAX_N];
int sa[MAX_N],cnt[MAX_N],t1[MAX_N],t2[MAX_N],ssa[MAX_N],height[MAX_N],rk[MAX_N];
int n,k;
void calc_sa(){
    int m=127;//ASCII码值范围
    int i,k,*x=t1,*y=t2;
    for(i=0;i<m;i++)
        cnt[i]=0;
    for(i=0;i<n;i++)
        cnt[x[i]=s[i]]++;
    for(i=1;i<m;i++)
        cnt[i]+=cnt[i-1];
    for(i=n-1;i>=0;i--)
        sa[--cnt[x[i]]]=i;
    for(k=1;k<=n;k<<=1){
        int p=0;
        for(i=n-k;i<n;i++)
            y[p++]=i;
        for(i=0;i<n;i++)
            if(sa[i]>=k)
            y[p++]=sa[i]-k;
        for(i=0;i<m;i++)
            cnt[i]=0;
        for(i=0;i<n;i++)
            cnt[x[y[i]]]++;
        for(i=1;i<m;i++)
            cnt[i]+=cnt[i-1];
        for(i=n-1;i>=0;i--)
            sa[--cnt[x[y[i]]]]=y[i];
        swap(x,y);
        p=1;
        x[sa[0]]=0;
        for(i=1;i<n;i++)
            x[sa[i]]=(y[sa[i-1]]==y[sa[i]]&&y[sa[i-1]+k]==y[sa[i]+k]?p-1:p++);
        if(p>=n)
            break;
        m=p;
    }
}
void getheight(int n){
    int i,j,k=0;
    for(i=0;i<n;i++)
        rk[sa[i]]=i;
    height[0]=0;
    for(i=0;i<n;i++){
        if(k)
            k--;
        if(rk[i]==0)
            continue;
        int j=sa[rk[i]-1];
        while(s[i+k]==s[j+k])
            k++;
        height[rk[i]]=k;
    }
}
int dp[MAX_N][25];
void rmq_init(){
    for(int i=0;i<n;i++)
        dp[i][0]=height[i];
    for(int j=1;(1<<j)<=n;j++){
     for(int i=0;i+(1<<j)-1<n;i++){
         dp[i][j]=min(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
  }
 }
}
int rmq(int l,int r){
 int k=log2(r-l+1);
 return min(dp[l][k],dp[r-(1<<k)+1][k]);
}
int find_1(int ca,int len){//二分找与排名为ca的后缀公共前缀长度等于len的第一个后缀
    int l=0,r=ca,mid;
    while(l<r){
        mid=(l+r)>>1;
        if(rmq(mid+1,ca)>=len){
            r=mid;
        }
        else
            l=mid+1;
    }
    return l;
}
int find_2(int ca,int len){//二分找与排名为ca的后缀公共前缀长度大于len的最后一个后缀
    int l=ca,r=n-1,mid;
    while(l<r){
        mid=(l+r+1)>>1;
        if(rmq(ca+1,mid)>=len){
            l=mid;
        }
        else
            r=mid-1;
    }
    return l;
}
int main(void){
 int T,q,i,l,r,kk;
 cin>>T;
 while(T--){
        scanf("%d%d",&n,&q);
        scanf("%s",s);
        for(i=0;i<=n;i++){
            sa[i]=0;
            rk[i]=0;
            height[i]=0;
        }
        calc_sa();
        getheight(n);
        //cout<<"safdad\n";
        rmq_init();
        num=0;
        for(i=1;i<=n;i++)
            ssa[i]=sa[i-1]+1;
        build(1,1,n);
        for(i=1;i<=n;i++){
            root[i]=++num;
            add(root[i-1],root[i],1,n,ssa[i]);
        }
        //cout<<num<<"num\n";
        for(i=0;i<q;i++){
            scanf("%d%d%d",&l,&r,&kk);
            l--;r--;
            int x=find_1(rk[l],r-l+1)+1;
            int y=find_2(rk[l],r-l+1)+1;
            //cout<<x<<" "<<y<<" x,y\n";
            if(y-x+1<kk)
                printf("-1\n");
            else
                printf("%d\n",find(root[x-1],root[y],1,n,kk));
        }
 }
 return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值