思维+dfs+二染色,CF 1060E - Sergey and Subway

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

1060E - Sergey and Subway


二、解题报告

1、思路分析

考虑修改后的图,任意两点间的距离有何变化?

除2向上取整

那么我们要求的就是Σ[d / 2]

直接求太慢了,考虑求每个边的贡献,和奇数路径点对的贡献

每个边的贡献为上方点的数目乘下方点的数目,这个我们将权值下放到点上,dfs求子树大小即可

那么奇数路径点的数目如何求呢?

我们对树进行二染色,显然颜色不同的点对间路径权值就是奇数

那么问题就迎刃而解了

2、复杂度

时间复杂度: O(N)空间复杂度:O(N)

3、代码详解

 ​
#include <bits/stdc++.h>
using i64 = long long;
using i128 = __int128;
using PII = std::pair<int, int>;
using PIII = std::pair<int, PII>;
const int inf = 1e9 + 7, P = 1e9 + 7;

void solve() {
    int n;
    std::cin >> n;
    std::vector<std::vector<int>> g(n);
    for (int i = 1, a, b; i < n; ++ i) {
        std::cin >> a >> b;
        -- a, -- b;
        g[a].push_back(b);
        g[b].push_back(a);
    }


    std::vector<int> sz(n, 1);
    std::vector<bool> color(n);
    int con = 0;

    auto dfs = [&](auto&& self, int u, int fa) -> void {
        con += color[u];
        for (int v : g[u]) {
            if (v == fa) continue;
            color[v] = color[u] ^ 1;
            self(self, v, u);
            sz[u] += sz[v];
        }
    };

    dfs(dfs, 0, -1);

    i64 res = 1LL * con * (n - con);
    for (int x : sz)
        res += 1LL * (n - x) * x;
    std::cout << res / 2;
}


int main(int argc, char** argv) {
    std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
    int _ = 1;
    // std::cin >> _;
    while (_ --)
        solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值