目录
一、题目
1、题目描述
2、输入输出
2.1输入
2.2输出
3、原题链接
B - Sereja and Table |
二、解题报告
1、思路分析
合法矩阵: 任意相邻行列相同和相反
我们可以进行 k 次 操作
若 k < n,则若存在合法矩阵,一定有一行不用动
我们枚举行,O(n * n * m)
若 k > n,我们直接考虑第一列每个位置变不变
2^n * n * m,(这里由于k很小所以n很小)
2、复杂度
时间复杂度: O(n^2 m) 或 O(2^k * n * m)空间复杂度:O(nm)
3、代码详解
#include <bits/stdc++.h>
#define sc scanf
using i64 = long long;
using PII = std::pair<int, int>;
constexpr int inf = 1e9 + 7;
void solve() {
int n, m, k;
std::cin >> n >> m >> k;
int res = inf;
if (n > k) {
std::vector<std::bitset<100>> g(n);
for (int i = 0; i < n; ++ i)
for (int j = 0, a; j < m; ++ j)
std::cin >> a, g[i][j] = a;
for (int i = 0; i < n; ++ i) {
int s = 0;
for (int j = 0; j < n; ++ j) {
if (i == j) continue;
s += std::min((g[i] ^ g[j]).count(), ((~g[i]) ^ g[j]).count() - (100 - m));
}
if (s <= k)
res = std::min(res, s);
}
}
else {
std::vector<std::bitset<100>> g(m);
for (int i = 0; i < n; ++ i)
for (int j = 0, a; j < m; ++ j)
std::cin >> a, g[j][i] = a;
for (int i = 0, ed = 1 << n; i < ed; ++ i) {
std::bitset<100> t = std::bitset<100>(i);
int s = (t ^ g[0]).count();
for (int j = 1; j < m; ++ j) {
s += std::min((t ^ g[j]).count(), ((~t) ^ g[j]).count() - (100 - n));
}
if (s <= k)
res = std::min(res, s);
}
}
if (res < inf) std::cout << res;
else std::cout << -1;
}
int main() {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
std::ios::sync_with_stdio(false), std::cin.tie(nullptr), std::cout.tie(nullptr);
int _ = 1;
// std::cin >> _;
while (_ --)
solve();
return 0;
}