位运算+贪心,CF1995 C - Squaring

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

C - Squaring


二、解题报告

1、思路分析

和CF1883E一样的题目:https://codeforces.com/contest/1883/problem/E

那道题的操作是a[i] * 2

这道题的操作是a[i]^2

对于2 ^ k,其平方相等于 k * 2

也就是说 a[i] ^ 2相当于其2的对数 * 2,所以把那道题的代码搬过来仍然能过,只要把a[i] * 2换成平方即可

那道题的题解:CF1883 E - Look Back-CSDN博客

2、复杂度

时间复杂度: O(N log(logN))空间复杂度:O(N)

3、代码详解

 ​
#include <bits/stdc++.h>
#define sc scanf
using i64 = long long;
using i128 = __int128;
using PII = std::pair<int, int>;
constexpr int inf32 = 1e9 + 7;
constexpr i64 inf64 = 1e18 + 7;
constexpr int P = 998244353;
constexpr double eps = 1e-6;

// #define DEBUG

void solve()
{
    int n;
    std::cin >> n;
    std::vector<i64> a(n);
    for (int i = 0; i < n; ++ i) std::cin >> a[i];
    int i = 0;
    for (; i < n && a[i] == 1; ++ i) ;
    i64 res = 0;    
    ++ i;
    for (i64 s = 0; i < n; ++ i) {
        if (a[i] == 1) {
            res = -1;
            break;
        }
        int c = 0;
        i64 x = a[i];
        while (a[i - 1] > x)
            x *= x, ++ c;
        x = a[i - 1];
        while (s > 0 && a[i] >= x * x)
            x *= x, -- s;

        s += c;
        res += s;
    }

    std::cout << res << '\n';
}

int main()
{
#ifdef DEBUG
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif
    std::ios::sync_with_stdio(false), std::cin.tie(nullptr), std::cout.tie(nullptr);
    int _ = 1;
    std::cin >> _;
    while (_--)
        solve();
    return 0;
}

Sage是一个开源数学软件包,它提供了广泛的数学函数和工具,包括用于处理各种算法,如Rabin-Miller素数检验算法。Rabin-Miller算法是一种用于判断一个大整数是否可能是质数的概率性测试方法。以下是使用Sage如何实现该算法的一个简单示例: ```python from sage.crypto.number_theory.prime import is_prime def rabin_miller_test(n, k=5): # k通常是5次试验,可根据需要调整 if n < 2 or (n % 2 == 0 and n != 2): return False, "Input must be an odd number greater than 1." # Miller-Rabin test implementation witnesses = [] # List of witness integers for _ in range(k): a = random.randint(2, n - 2) # Choose a random integer as the witness x = pow(a, n - 1, n) # Compute x = a^(n-1) mod n if x != 1 and x != n - 1: # Not a trivial divisor for _ in range(log2(n)): # Perform modular squaring x = x * x % n if x == n - 1: break else: # Squaring did not reach 1 witnesses.append(False) return False, f"{a} is a witness that {n} might not be prime." if len(witnesses) == k: # All tests passed witnesses.append(True) return True, None return witnesses, f"Possible witnesses: {witnesses}" # 使用示例 num = int(input("Enter a number to test: ")) result, message = rabin_miller_test(num) if result: print(f"{num} is probably prime ({message}).") else: print(f"{num} is composite ({message}).") ``` 在这个例子中,我们首先检查输入是否满足Rabin-Miller的要求,然后通过多次随机选择测试点(`a`),计算`a^(n-1) mod n`,如果结果不符合特定模式,则认为`n`不是素数。请注意,虽然这个测试可以提供很高的概率保证,但并非绝对确定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值