划分型dp,CF 1935C - Messenger in MAC

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

1935C - Messenger in MAC


二、解题报告

1、思路分析

比较简单的思路是反悔贪心,这里不展开说了,来说一下dp的做法

由于式子里面带绝对值,很烦,我们将pair按照b升序排序,那么原式就变为

sum(a) + max(b) - min(b)

我们定义状态f(i, j) 为 前 i  个数 选了 j  个数 且以 (a[i], b[i]) 结尾,即第 i 个 数必选的最小 sum(a) - min(b) 的花费,这样定义是因为第 i 个数必选,那么max(b) 一定是 b[i]

则 f(i + 1, j + 1) = min(f(k, j)) + a[i]

枚举  k的话就变成了O(N^3),考虑维护前缀最小值,可以优化到O(N^2)

滚动数组优化又可以优化空间到O(N)

2、复杂度

时间复杂度: O(N^2)空间复杂度:O(N)

3、代码详解

 ​
#include <bits/stdc++.h>
#define sc scanf
using i64 = long long;
using i128 = __int128;
using PII = std::pair<int, int>;
constexpr int inf32 = 1e9 + 7;
constexpr i64 inf64 = 1e18 + 7;
constexpr int P = 998244353;
constexpr double eps = 1e-6;

// #define DEBUG

void solve()
{
    int n, L;
    std::cin >> n >> L;
    std::vector<int> a(n), b(n);
    
    for (int i = 0; i < n; ++ i) std::cin >> a[i] >> b[i];

    std::vector<int> p(n);
    std::iota(p.begin(), p.end(), 0);
    std::sort(p.begin(), p.end(), [&b](int i, int j) {
        return b[i] < b[j];
    });
    
    int res = 0;
    std::vector<i64> f(n + 1, inf64);
    
    for (int k = 0; k < n; ++ k) {
        int i = p[k];
        for (int j = k + 1; j; -- j) {
            f[j + 1] = std::min(f[j + 1], f[j] + a[i]);
            if (f[j] + b[i] + a[i] <= L)
                res = std::max(res, j + 1);
        }
        f[1] = std::min<i64>(f[1], a[i] - b[i]);
        if (a[i] <= L) res = std::max(res, 1);
    }

    std::cout << res << '\n';
}

int main()
{
#ifdef DEBUG
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif
    std::ios::sync_with_stdio(false), std::cin.tie(nullptr), std::cout.tie(nullptr);
    int _ = 1;
    std::cin >> _;
    while (_--)
        solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值