数学物理方法(吴崇试):第一章笔记

2 篇文章 0 订阅

若无特别声明,本文所有图片来源于吴崇试,高春媛《数学物理方法》。

  1. 复数序列的收敛定义为模的收敛,于是所有实数列收敛的结论全都可以搬过来。有点堆砌定理,没什么章法。

  2. 复平面内的点集:复平面点的集合。

  3. 点集的内点:任意邻域都是点集的子集。

  4. 点集的区域:点集内一个全是内点的子集,且该子集内任意两点可以用其内一条折线相连(连通性)。反例:在这里插入图片描述

  5. 单连通区域:在区域内作任何自身不相交的闭合曲线(围道),围道内的点都属于该区域。否则是多连通区域

  6. 有界区域:区域内任意一点的模有上限。否则是无界区域。

  7. 区域的边界点:不属于该区域,但任意邻域内总有点属于该区域的点。所有边界点构成边界(用 C C C ∂ G \partial G G 表示)。边界 ∪ \cup 区域=闭区域。这个偏微分表示很有意思,感觉背后有渊源。

  8. 边界方向:区域在左侧就逆时针,区域在右侧就顺时针。

  9. 复变函数:某区域上把一个复数映射为另一个唯一复数的关系。多值情况另讲。

对于复变函数 w = f ( z ) w=f(z) w=f(z),若设 w = u + i v w=u+\mathrm iv w=u+iv z = x + i y z=x+\mathrm iy z=x+iy,则有 w = f ( z ) = u ( x , y ) + i v ( x , y ) w=f(z)=u(x,y)+\mathrm iv(x,y) w=f(z)=u(x,y)+iv(x,y)

由于 u , v u,v u,v 都可以代表任意的函数关系,所以这个式子只是表示 x , y x,y x,y 均有可能影响到 u , v u,v u,v 的值,实际上不一定影响(令对应元系数为0即可)。

  1. 无穷远点:无界序列的聚点,不在复数域 C \mathbb C C 内,其模大于任何正数,辐角不确定。 { ∞ } ∪ C = C ‾ \{\infty\}\cup\mathbb C=\overline{\mathbb C} {}C=C 称为扩充复平面。
  2. R i e m a n n \rm Riemann Riemann 球面:过扩充复平面的原点作直径为1的球面与其相切,切点为南极,另一端为北极。北极与平面上任一点的连线必定与球面有且只有一个交点,这一点与扩充复平面上的点有一一对应关系。令点无穷远,则对应的球面点趋向北极点,于是北极点对应无穷远点。

正十七边形问题太特殊,不够实用,又涉及一些数论上的东西,有空再研究。

习题

  1. 将下列和式表示为有限形式:
    1. ∑ k = 1 n cos ⁡ k ϕ \sum_{k=1}^n\cos k\phi k=1ncoskϕ
      z = cos ⁡ ϕ + i sin ⁡ ϕ z = \cos\phi+\mathrm i\sin\phi z=cosϕ+isinϕ,则 z k = cos ⁡ k ϕ + i sin ⁡ k ϕ z^k=\cos k\phi+\mathrm i\sin k\phi zk=coskϕ+isinkϕ,于是有
      ∑ k = 1 n z k = z ( 1 − z n ) 1 − z = ( cos ⁡ ϕ + i sin ⁡ ϕ ) ( 1 − cos ⁡ n ϕ − i sin ⁡ n ϕ ) 1 − cos ⁡ ϕ − i sin ⁡ ϕ = cos ⁡ ϕ ( 1 − cos ⁡ n ϕ ) + sin ⁡ ϕ sin ⁡ n ϕ + i [ sin ⁡ ϕ ( 1 − cos ⁡ n ϕ ) − cos ⁡ ϕ sin ⁡ n ϕ ] ( 1 − cos ⁡ ϕ − i sin ⁡ ϕ ) ( 1 − cos ⁡ ϕ + i sin ⁡ ϕ ) ( 1 − cos ⁡ ϕ + i sin ⁡ ϕ ) = cos ⁡ ϕ − cos ⁡ ( n + 1 ) ϕ + i [ sin ⁡ ϕ − sin ⁡ ( n + 1 ) ϕ ] ( 1 − cos ⁡ ϕ ) 2 + sin ⁡ 2 ϕ ( 1 − cos ⁡ ϕ + i sin ⁡ ϕ ) \begin{aligned} \sum_{k=1}^n z^k&=\frac{z(1-z^n)}{1-z} = \frac{(\cos\phi+\mathrm i\sin\phi)(1-\cos n\phi-\mathrm i\sin n\phi)}{1-\cos\phi-\mathrm i\sin\phi}\\ &=\frac{\cos\phi(1-\cos n\phi)+\sin\phi\sin n\phi +\mathrm i[\sin\phi(1-\cos n\phi)-\cos\phi\sin n\phi]}{(1-\cos\phi-\mathrm i\sin\phi)(1-\cos\phi+\mathrm i\sin\phi)}(1-\cos\phi+\mathrm i\sin\phi)\\ &=\frac{\cos\phi-\cos(n+1)\phi+\mathrm i[\sin\phi-\sin(n+1)\phi]}{(1-\cos\phi)^2+\sin^2\phi}(1-\cos\phi+\mathrm i\sin\phi) \end{aligned} k=1nzk=1zz(1zn)=1cosϕisinϕ(cosϕ+isinϕ)(1cosnϕisinnϕ)=(1cosϕisinϕ)(1cosϕ+isinϕ)cosϕ(1cosnϕ)+sinϕsinnϕ+i[sinϕ(1cosnϕ)cosϕsinnϕ](1cosϕ+isinϕ)=(1cosϕ)2+sin2ϕcosϕcos(n+1)ϕ+i[sinϕsin(n+1)ϕ](1cosϕ+isinϕ)
      这个式子的分子太长,单写一下:
      分子 = [ cos ⁡ ϕ − cos ⁡ 2 ϕ − cos ⁡ ( n + 1 ) ϕ + cos ⁡ ϕ cos ⁡ ( n + 1 ) ϕ − sin ⁡ 2 ϕ + sin ⁡ ϕ sin ⁡ ( n + 1 ) ϕ ] + i [ sin ⁡ ϕ − sin ⁡ ϕ cos ⁡ ϕ − sin ⁡ ( n + 1 ) ϕ + sin ⁡ ( n + 1 ) ϕ cos ⁡ ϕ + sin ⁡ ϕ cos ⁡ ϕ − sin ⁡ ϕ cos ⁡ ( n + 1 ) ϕ ] = [ cos ⁡ ϕ − 1 − cos ⁡ ( n + 1 ) ϕ + cos ⁡ n ϕ ] + i [ sin ⁡ ϕ − sin ⁡ ( n + 1 ) ϕ + sin ⁡ n ϕ ] 分母 = 1 + 1 − 2 cos ⁡ ϕ = 2 ( 1 − cos ⁡ ϕ ) \begin{aligned} 分子 &= [\cos\phi-\cos^2\phi-\cos(n+1)\phi+\cos\phi\cos(n+1)\phi-\sin^2\phi+\sin\phi\sin(n+1)\phi]\\ &+\mathrm i[\sin\phi-\sin\phi\cos\phi-\sin(n+1)\phi+\sin(n+1)\phi\cos\phi+\sin\phi\cos\phi-\sin\phi\cos(n+1)\phi]\\ &= [\cos\phi -1-\cos(n+1)\phi+\cos n\phi]+\mathrm i[\sin\phi-\sin(n+1)\phi+\sin n\phi]\\ 分母&=1+1-2\cos\phi=2(1-\cos\phi) \end{aligned} 分子分母=[cosϕcos2ϕcos(n+1)ϕ+cosϕcos(n+1)ϕsin2ϕ+sinϕsin(n+1)ϕ]+i[sinϕsinϕcosϕsin(n+1)ϕ+sin(n+1)ϕcosϕ+sinϕcosϕsinϕcos(n+1)ϕ]=[cosϕ1cos(n+1)ϕ+cosnϕ]+i[sinϕsin(n+1)ϕ+sinnϕ]=1+12cosϕ=2(1cosϕ)
      所以
      实部 = − 1 2 − cos ⁡ ( n + 1 ) ϕ − cos ⁡ n ϕ 2 ( 1 − cos ⁡ ϕ ) ,虚部 = sin ⁡ ϕ − sin ⁡ ( n + 1 ) ϕ + sin ⁡ n ϕ 2 ( 1 − cos ⁡ ϕ ) 实部 = -\frac12-\frac{\cos(n+1)\phi-\cos n\phi}{2(1-\cos\phi)},虚部=\frac{\sin\phi-\sin(n+1)\phi+\sin n\phi}{2(1-\cos\phi)} 实部=212(1cosϕ)cos(n+1)ϕcosnϕ,虚部=2(1cosϕ)sinϕsin(n+1)ϕ+sinnϕ
    2. ∑ k = 1 n sin ⁡ k ϕ \sum_{k=1}^n\sin k\phi k=1nsinkϕ:取上式虚部即可。
  2. 求聚点。
    1. z n = ( 1 + i n ) sin ⁡ n π 6 z_n=\big(1+\frac {\mathrm i}{n}\big)\sin\frac{n\pi}{6} zn=(1+ni)sin6
      聚点为 ± 1 2 , ± 3 2 , ± 1 , 0 \pm\frac12,\pm\frac{\sqrt3}2,\pm1,0 ±21,±23 ,±1,0,虚部均收敛为 i 0 \mathrm i0 i0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值