数学物理方法(吴崇试):第二章笔记

  • 复变函数极限、连续同实变函数。
  • 一致连续:这个概念微积分没接触过,但数分里有。在有界闭区域上。
  • 可导:设 w = f ( z ) w=f(z) w=f(z) 是区域 G G G 内的单值函数,如果在 G G G 内的某点 z z z
    lim ⁡ Δ z → 0 f ( z + Δ z ) − f ( z ) Δ z \lim_{\Delta z\to 0}\frac{f(z+\Delta z)-f(z)}{\Delta z} Δz0limΔzf(z+Δz)f(z)
    存在,则可导。
  • 可导存在的Cauchy-Riemann条件:
    ∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} xu=yv,yu=xv
    这个条件是从 Δ x → 0 , Δ y = 0 \Delta x\to 0,\Delta y = 0 Δx0,Δy=0 Δ x = 0 , Δ y → 0 \Delta x = 0, \Delta y\to 0 Δx=0,Δy0 两种不同的趋近情况算出的结果必须相等推出来的,是必要条件。只要四个偏导均存在且连续,并且满足Cauchy-Riemann条件,就可以判断函数在该点可微。
  • 解析函数:在定义域上每一点都可导。于是Cauchy-Riemann条件处处成立。
  • 对于解析函数,实部和虚部可以互相确定。例如知道实部 u ( x , y ) u(x,y) u(x,y),则虚部可以表示为
    d v = ∂ v ∂ x d x + ∂ v ∂ y d y = − ∂ u ∂ y d x + ∂ u ∂ x d y \mathrm d v=\frac{\partial v}{\partial x}\mathrm d x+\frac{\partial v}{\partial y}\mathrm dy=-\frac{\partial u}{\partial y}\mathrm d x+\frac{\partial u}{\partial x}\mathrm dy dv=xvdx+yvdy=yudx+xudy
    然后积分得到 v v v
  • 未完待续
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值