04-树4 是否同一棵二叉搜索树

给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。

输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。

简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。

输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。

#include<iostream>
using namespace std;

typedef struct TreeNode* Tree;
struct TreeNode {
	int v;
	Tree left, right;
	int flag;
};

Tree NewNode(int V);
Tree Insert(Tree T, int V);
int check(Tree T, int V);
int Judge(Tree T, int N);
void Reset(Tree T);
void FreeTree(Tree T);
Tree MakeTree(int N);

int main()
{
	int i, N, L;
	Tree T;

	cin >> N;		//N:每个序列插入元素个数
	while (N) {
		cin >> L;			//L:要检查的序列个数
		T = MakeTree(N);		//原树
		for (i = 0; i < L; i++) {
			if (Judge(T, N)) cout << "Yes" << endl;		//用树与需检查序列比对
			else cout << "No" << endl;
			Reset(T);			//重置原树的flag值
		}
		FreeTree(T);		//free树
		cin >> N;
	}

	return 0;
}

//作原树
Tree MakeTree(int N)
{
	Tree T;
	int i, V;

	cin >> V;
	T = NewNode(V);		//根节点
	for (i = 1; i < N; i++) {
		cin >> V;
		T = Insert(T, V);
	}
	return T;
}

//创造新节点
Tree NewNode(int V)
{
	Tree T = (Tree)malloc(sizeof(struct TreeNode));
	T->v = V;
	T->left = T->right = NULL;
	T->flag = 0;
	return T;
}

//插入树中节点
Tree Insert(Tree T, int V)
{
	if (!T) return T = NewNode(V);		//递归退出条件,为空则创造新节点插入
	else {
		if (V < T->v) T->left = Insert(T->left, V);		//递归到需要插入的位置
		else T->right = Insert(T->right, V);
	}
	return T;
}

int check(Tree T, int V)
{
	if (T->flag) {			//flag为1时:已经过的节点
		if (V < T->v) return check(T->left, V);			//值小于则递归检查左树
		else if (V > T->v) return check(T->right, V);
		else return 0;			//等于已经过的节点说明序列不能生成同一二叉树
	}
	else {
		if (V == T->v) {		//flag==0且值相等
			T->flag = 1;		//检查通过
			return 1;
		}
		else {
			return 0;			//经过flag==0的节点,检查未通过
		}
	}
}


//判断函数
int Judge(Tree T, int N)
{
	int i, V, flag = 0;			//flag用于return值,若直接return则输入不完全,必须把序列后面的数全部读完

	cin >> V;
	if (V != T->v) flag = 1;		//检查根节点
	else T->flag = 1;
	for (i = 1; i < N; i++) {
		cin >> V;
		if ((!flag) && (!check(T, V))) flag = 1;  //若flag==0 or check==0 return 0;
	}
	if (flag) return 0;
	else return 1;
}

//递归重置flag
void Reset(Tree T)
{
	if (T->left) Reset(T->left);
	if (T->right) Reset(T->right);
	T->flag = 0;
}

//递归free节点
void FreeTree(Tree T)
{
	if (T->left) FreeTree(T->left);
	if (T->right) FreeTree(T->right);
	free(T);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值