给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
#include<iostream>
using namespace std;
typedef struct TreeNode* Tree;
struct TreeNode {
int v;
Tree left, right;
int flag;
};
Tree NewNode(int V);
Tree Insert(Tree T, int V);
int check(Tree T, int V);
int Judge(Tree T, int N);
void Reset(Tree T);
void FreeTree(Tree T);
Tree MakeTree(int N);
int main()
{
int i, N, L;
Tree T;
cin >> N; //N:每个序列插入元素个数
while (N) {
cin >> L; //L:要检查的序列个数
T = MakeTree(N); //原树
for (i = 0; i < L; i++) {
if (Judge(T, N)) cout << "Yes" << endl; //用树与需检查序列比对
else cout << "No" << endl;
Reset(T); //重置原树的flag值
}
FreeTree(T); //free树
cin >> N;
}
return 0;
}
//作原树
Tree MakeTree(int N)
{
Tree T;
int i, V;
cin >> V;
T = NewNode(V); //根节点
for (i = 1; i < N; i++) {
cin >> V;
T = Insert(T, V);
}
return T;
}
//创造新节点
Tree NewNode(int V)
{
Tree T = (Tree)malloc(sizeof(struct TreeNode));
T->v = V;
T->left = T->right = NULL;
T->flag = 0;
return T;
}
//插入树中节点
Tree Insert(Tree T, int V)
{
if (!T) return T = NewNode(V); //递归退出条件,为空则创造新节点插入
else {
if (V < T->v) T->left = Insert(T->left, V); //递归到需要插入的位置
else T->right = Insert(T->right, V);
}
return T;
}
int check(Tree T, int V)
{
if (T->flag) { //flag为1时:已经过的节点
if (V < T->v) return check(T->left, V); //值小于则递归检查左树
else if (V > T->v) return check(T->right, V);
else return 0; //等于已经过的节点说明序列不能生成同一二叉树
}
else {
if (V == T->v) { //flag==0且值相等
T->flag = 1; //检查通过
return 1;
}
else {
return 0; //经过flag==0的节点,检查未通过
}
}
}
//判断函数
int Judge(Tree T, int N)
{
int i, V, flag = 0; //flag用于return值,若直接return则输入不完全,必须把序列后面的数全部读完
cin >> V;
if (V != T->v) flag = 1; //检查根节点
else T->flag = 1;
for (i = 1; i < N; i++) {
cin >> V;
if ((!flag) && (!check(T, V))) flag = 1; //若flag==0 or check==0 return 0;
}
if (flag) return 0;
else return 1;
}
//递归重置flag
void Reset(Tree T)
{
if (T->left) Reset(T->left);
if (T->right) Reset(T->right);
T->flag = 0;
}
//递归free节点
void FreeTree(Tree T)
{
if (T->left) FreeTree(T->left);
if (T->right) FreeTree(T->right);
free(T);
}